An extension of the H-theorem for dissipative particle dynamics (DPD) to the case of a multi-component fluid is made. Detailed balance and an additional H-theorem are proved for an energy-conserving version of the DPD algorithm. The implications of these results for the statistical mechanics of the method are discussed.
Dissipative particle dynamics (DPD) belongs to a class of models and computational algorithms developed to address mesoscale problems in complex fluids and soft matter in general. It is based on the notion of particles that represent coarse-grained p
ortions of the system under study and allow, therefore, to reach time and length scales that would be otherwise unreachable from microscopic simulations. The method has been conceptually refined since its introduction almost twenty five years ago. This perspective surveys the major conceptual improvements in the original DPD model, along with its microscopic foundation, and discusses outstanding challenges in the field. We summarize some recent advances and suggests avenues for future developments.
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve
n variables under Time-Reversal, we exploit the relation between entropy production and the breakdown of Detailed Balance to establish general constraints on the non-equilibrium steady-states (NESS), which relate the non-equilibrium character of the dynamics with symmetry properties of the NESS distribution. This provides a direct route to derive extended Fluctuation-Dissipation Relations, expressing the linear response function in terms of NESS correlations. Such framework provides a unified way to understand the departure from equilibrium of active systems and its linear response. We then consider two paradigmatic models of interacting self-propelled particles, namely Active Brownian Particles (ABP) and Active Ornstein-Uhlenbeck Particles (AOUP). We analyze the non-equilibrium character of these systems (also within a Markov and a Chapman-Enskog approximation) and derive extended Fluctuation-Dissipation Relations for them, clarifying which features of these active model systems are genuinely non-equilibrium.
The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD f
luid are explicitly calculated in terms of the system parameters for the continuous time version of the model.
The algorithm for the DPD fluid, the dynamics of which is conceptually a combination of molecular dynamics, Brownian dynamics and lattice gas automata, is designed for simulating rheological properties of complex fluids on hydrodynamic time scales. T
his paper calculates the equilibrium and transport properties (viscosity, self-diffusion) of the thermostated DPD fluid explicitly in terms of the system parameters. It is demonstrated that temperature gradients cannot exist, and that there is therefore no heat conductivity. Starting from the N-particle Fokker-Planck, or Kramers equation, we prove an H-theorem for the free energy, obtain hydrodynamic equations, and derive a non-linear kinetic equation (the Fokker-Planck-Boltzmann equation) for the single particle distribution function. This kinetic equation is solved by the Chapman-Enskog method. The analytic results are compared with numerical simulations.
This article presents a new numerical scheme for the discretization of dissipative particle dynamics with conserved energy. The key idea is to reduce elementary pairwise stochastic dynamics (either fluctuation/dissipation or thermal conduction) to ef
fective single-variable dynamics, and to approximate the solution of these dynamics with one step of a Metropolis-Hastings algorithm. This ensures by construction that no negative internal energies are encountered during the simulation, and hence allows to increase the admissible timesteps to integrate the dynamics, even for systems with small heat capacities. Stability is only limited by the Hamiltonian part of the dynamics, which suggests resorting to multiple timestep strategies where the stochastic part is integrated less frequently than the Hamiltonian one.