ترغب بنشر مسار تعليمي؟ اضغط هنا

Sudakov Resummations in Mueller-Navelet Dijet Production

123   0   0.0 ( 0 )
 نشر من قبل Bowen Xiao
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In high energy hadron-hadron collisions, dijet production with large rapidity separation proposed by Mueller and Navelet, is one of the most interesting processes which can help us to directly access the well-known Balitsky-Fadin-Kuraev-Lipatov evolution dynamics. The objective of this work is to study the Sudakov resummation of Mueller-Navelet jets. Through the one-loop calculation, Sudakov type logarithms are obtained for this process when the produced dijets are almost back-to-back. These results could play an important role in the phenomenological study of dijet correlations with large rapidity separation at the LHC.

قيم البحث

اقرأ أيضاً

We discuss the azimuthal angle decorrelation of Mueller-Navelet jets at hadron colliders and forward jets in Deep Inelastic Scattering within the BFKL framework with a NLO kernel. We stress the need of collinear improvements to obtain good perturbati ve convergence. We provide estimates of these decorrelations for large rapidity differences at the Tevatron, LHC and HERA.
We investigate different final state features in Mueller-Navelet jets events at hadron colliders. The focus lies on the average rapidity ratio between subsequent minijet emissions which has been investigated in previous works but now is modified to a lso incorporate the transverse momenta together with the rapidities of the emitted jets. We study the dependence of this observable on a lower transverse momentum veto which does affect the typical minijet multiplicity of the events under scrutiny. We find that this observable is stable when including higher order quantum corrections, also when collinear terms are resummed to all orders.
We calculate cross section and azimuthal decorrellation of Mueller Navelet jets at the LHC in the complete next-lo-leading order BFKL framework, i.e. including next-to-leading corrections to the Greens function as well as next-to-leading corrections to the Mueller Navelet vertices. The obtained results for standard observables proposed for studies of Mueller Navelet jets show that both sources of corrections are of equal, big importance for final magnitude and final behavior of observables. The astonishing conclusion of our analysis is that the observables obtained within the complete next-lo-leading order BFKL framework of the present paper are quite similar to the same observables obtained within next-to-leading logarithm DGLAP type treatment. This fact sheds doubts on general belief that the studies of Mueller Navelet jets at the LHC will lead to clear discrimination between the BFKL and the DGLAP dynamics.
We present a method for improving the phenomenological description of Mueller-Navelet jets at LHC, which is based on matching the BFKL resummation with fixed order calculations. We point out the need of a consistent identification of jets between exp erimental measurements and theoretical descriptions. We hope as well to motivate an extensive analysis of MN jets at LHC in run 2.
Large angle gluon radiations induced by multiple parton scatterings contribute to dijet production in deeply inelastic scattering off a large nucleus at the Electron-Ion Collider. Within the generalized high-twist approach to multiple parton scatteri ng, such contributions at the leading order in perturbative QCD and large Bjorken momentum fraction $x_B$ can be expressed as a convolution of the multiple parton scattering amplitudes and the transverse momentum dependent (TMD) two-parton correlation matrix elements. We study this medium-induced dijet spectrum and its azimuthal angle correlation under the approximation of small longitudinal momentum transfer in the secondary scattering and the factorization of two-parton correlation matrix elements as a product of quark and gluon TMD parton distribution function (PDF). Using a simple model for gluon saturation based on the parametrized gluon TMD PDF, we can calculate the $x_B$ and $Q^2$ dependence of the saturation scale and parton transport coefficient $hat q$. Contributions to dijet cross section from double scattering are power-suppressed and only become sizable for mini-jets at small transverse momentum. We find that the total dijet correlation for these mini-jets, which also includes the contribution from single scattering, is sensitive to the transverse momentum broadening in the quark TMD PDF at large $x$ and saturation in the gluon TMD PDF at small $x$ inside the nucleus. The correlation from double scattering is also found to increase with the dijet rapidity gap and have a quadratic nuclear-size dependence because of the Landau-Pomeranchuk-Migdal (LPM) interference in gluon emission induced by multiple scattering. Experimental measurements of such unique features in the dijet correlation can shed light on the LPM interference in strong interaction and gluon saturation in large nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا