ﻻ يوجد ملخص باللغة العربية
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars -- internal structure vs. external, environmental influences -- providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating isothermal cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and, at the same time, provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.
A brief overview of recent advances in the study of star formation in the Galactic Center (GC) environment is presented. Particular attention is paid to new insights concerning the suppression of star formation in GC molecular clouds. Another focus i
We investigate the triggering of star formation in clouds that form in Galactic scale flows as the ISM passes through spiral shocks. We use the Lagrangian nature of SPH simulations to trace how the star forming gas is gathered into self-gravitating c
We show that the mass fraction f_atm = 1.35*MHI/M of neutral atomic gas (HI and He) in isolated local disk galaxies of baryonic mass M is well described by a straightforward stability model for flat exponential disks. In the outer disk parts, where g
The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star forma
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge