ﻻ يوجد ملخص باللغة العربية
The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star formation appears to be different in this region is crucial if we are to understand the environmental dependence of the star formation process. Here, we present the detection of a sample of high-mass cores in the CMZs dust ridge that have been discovered with the Submillimeter Array as part of the CMZoom survey. These cores range in mass from ~ 50 - 2150 Msun within radii of 0.1 - 0.25 pc. All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We report that at least two of these cores (c1 and e1) contain young, high-mass protostars. We compare all of the detected cores with high-mass cores in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater - ~ 10^8 K/cm^3, as opposed to ~ 10^5 K/cm^3. The fact that > 80% of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.
NGC 3311 is the central galaxy of the Hydra I galaxy cluster. It has a hot interstellar medium and hosts a central dust lane with emission lines. These dust lanes are frequent in elliptical galaxies, but the case of NGC 3311 might be particularly int
A brief overview of recent advances in the study of star formation in the Galactic Center (GC) environment is presented. Particular attention is paid to new insights concerning the suppression of star formation in GC molecular clouds. Another focus i
The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionisation rate orders of magnitude higher than the disc; akin to the environment found in star-f
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars -- internal structure vs. external, environmental influences -- providing a unified picture for the regulation of st
The Central Molecular Zone (CMZ), a $sim$200 pc sized region around the Galactic Centre, is peculiar in that it shows a star formation rate (SFR) that is suppressed with respect to the available dense gas. To study the SFR in the CMZ, young stellar o