ﻻ يوجد ملخص باللغة العربية
White dwarfs (WDs) are the most promising captors of dark matter (DM) particles in the crests that are expected to build up in the cores of dense stellar clusters. The DM particles could reach sufficient densities in WD cores to liberate energy through self-annihilation. The extinction associated with our Galactic Centre, the most promising region where to look for such effects, makes it impossible to detect the potential associated luminosity of the DM-burning WDs. However, in smaller stellar systems which are close enough to us and not heavily extincted, such as $omega-$Cen, we may be able to detect DM-burning WDs. We investigate the prospects of detection of DM-burning WDs in a stellar cluster harbouring an IMBH, which leads to higher densities of DM at the centre as compared with clusters without one. We calculate the capture rate of WIMPs by a WD around an IMBH and estimate the luminosity that a WD would emit depending on its distance to the center of the cluster. Direct-summation $N-$body simulations of $omega-$Cen yield a non-negligible number of WDs in the range of radii of interest. We apply our assumption to published HST/ACS observations of stars in the center of $omega-$Cen to search for DM burning WDs and, although we are not able to identify any evident candidate because of crowding and incompleteness, we proof that their bunching up at high luminosities would be unique. We predict that DM burning will lead to a truncation of the cooling sequence at the faint end. The detection of DM burning in future observations of dense stellar clusters, such as globular clusters or ultra-compact dwarf galaxies could allow us to probe different models of DM distributions and characteristics such as the DM particle scattering cross section on nucleons. On the other hand, if DM-burning WDs really exist, their number and properties could give hints to the existence of IMBHs.
We study the equilibrium structures of white dwarfs with dark matter cores formed by non-self-annihilating dark matter DM particles with mass ranging from 1 GeV to 100 GeV, which are assumed to form an ideal degenerate Fermi gas inside the stars. For
Oppenheimer et al. (2001) have argued recently that at least 2% of the Galactic halo is comprised of white dwarfs If true, this finding has crucial implications for understanding the formation and evolution of the Milky Way. We draw attention to thre
A key prediction of the standard cosmological model -- which relies on the assumption that dark matter is cold, i.e. non-relativistic at the epoch of structure formation -- is the existence of a large number of dark matter substructures on sub-galact
We discuss the recent discovery by Oppenheimer et al (2001) of old, cool white dwarf stars, which may be the first direct detection of Galactic halo dark matter. We argue here that the contribution of more mundane white dwarfs of the stellar halo and
Fuzzy dark matter (FDM) is an attractive dark matter candidate motivated by small scale problems in astrophysics and with a rich phenomenology on those scales. We scrutinize the FDM model, more specifically the mass of the FDM particle, through a dyn