ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark-matter admixed white dwarfs

128   0   0.0 ( 0 )
 نشر من قبل Shing Chi Leung
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the equilibrium structures of white dwarfs with dark matter cores formed by non-self-annihilating dark matter DM particles with mass ranging from 1 GeV to 100 GeV, which are assumed to form an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O(10^-3) Msun and O(10^-6) Msun, respectively. The global properties of these stars, and in particular the corresponding Chandrasekhar mass limits, are essentially the same as those of traditional white dwarf models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip, far above those in traditional white dwarfs. For DM with particle mass 1 GeV, the DM core inside the star can be as massive as around 0.1 Msun and affects the global structure of the star significantly. In this case, the radius of a stellar model with DM can be about two times smaller than that of a traditional white dwarf. Furthermore, the Chandrasekhar mass limit can also be decreased by as much as 40%. Our results may have implications on to what extent type Ia supernovae can be regarded as standard candles - a key assumption in the discovery of dark energy.



قيم البحث

اقرأ أيضاً

Recently observed pulsars with masses $sim 1.1 ~M_{odot}$ challenge the conventional neutron star (NS) formation path by core-collapse supernova (CCSN). Using spherically symmetric hydrodynamics simulations, we follow the collapse of a massive white dwarf (WD) core triggered by electron capture, until the formation of a proto-NS (PNS). For initial WD models with the same central density, we study the effects of a static, compact dark matter (DM) admixed core on the collapse and bounce dynamics and mass of the PNS, with DM mass $sim 0.01 ~M_{odot}$. We show that increasing the admixed DM mass generally leads to slower collapse and smaller PNS mass, down to about 1.0 $M_{odot}$. Our results suggest that the accretion-induced collapse of dark matter admixed white dwarfs can produce low-mass neutron stars, such as the observed low-mass pulsar J0453+1559, which cannot be obtained by conventional NS formation path by CCSN.
White dwarfs (WDs) are the most promising captors of dark matter (DM) particles in the crests that are expected to build up in the cores of dense stellar clusters. The DM particles could reach sufficient densities in WD cores to liberate energy throu gh self-annihilation. The extinction associated with our Galactic Centre, the most promising region where to look for such effects, makes it impossible to detect the potential associated luminosity of the DM-burning WDs. However, in smaller stellar systems which are close enough to us and not heavily extincted, such as $omega-$Cen, we may be able to detect DM-burning WDs. We investigate the prospects of detection of DM-burning WDs in a stellar cluster harbouring an IMBH, which leads to higher densities of DM at the centre as compared with clusters without one. We calculate the capture rate of WIMPs by a WD around an IMBH and estimate the luminosity that a WD would emit depending on its distance to the center of the cluster. Direct-summation $N-$body simulations of $omega-$Cen yield a non-negligible number of WDs in the range of radii of interest. We apply our assumption to published HST/ACS observations of stars in the center of $omega-$Cen to search for DM burning WDs and, although we are not able to identify any evident candidate because of crowding and incompleteness, we proof that their bunching up at high luminosities would be unique. We predict that DM burning will lead to a truncation of the cooling sequence at the faint end. The detection of DM burning in future observations of dense stellar clusters, such as globular clusters or ultra-compact dwarf galaxies could allow us to probe different models of DM distributions and characteristics such as the DM particle scattering cross section on nucleons. On the other hand, if DM-burning WDs really exist, their number and properties could give hints to the existence of IMBHs.
We put constraints on the secondary component of GW190814 by analyzing the observational data of the event. The relativistic mean-field models are used to calculate the mass-radius profile and tidal deformability of the compact object, considering it as a massive neutron star with the presence of dark matter particles inside it. With the increase of dark matter percentage, the maximum mass, radius, and tidal deformability of the neutron star decreases. We observe that the predicted properties are well consistent with GW190814 observational data, suggesting the possibility of a dark matter admixed neutron star if the underlying nuclear equation of state is sufficiently stiff.
67 - Brad K. Gibson 2001
Oppenheimer et al. (2001) have argued recently that at least 2% of the Galactic halo is comprised of white dwarfs If true, this finding has crucial implications for understanding the formation and evolution of the Milky Way. We draw attention to thre e potential shortcomings in the Oppenheimer et al. analysis which lead us to conclude that the density of white dwarfs with halo kinematics may have been significantly overestimated.
Dark matter that is capable of sufficiently heating a local region in a white dwarf will trigger runaway fusion and ignite a type Ia supernova. This was originally proposed in Graham et al. (2015) and used to constrain primordial black holes which tr ansit and heat a white dwarf via dynamical friction. In this paper, we consider dark matter (DM) candidates that heat through the production of high-energy standard model (SM) particles, and show that such particles will efficiently thermalize the white dwarf medium and ignite supernovae. Based on the existence of long-lived white dwarfs and the observed supernovae rate, we derive new constraints on ultra-heavy DM which produce SM particles through DM-DM annihilations, DM decays, and DM-SM scattering interactions in the stellar medium. As a concrete example, we rule out supersymmetric Q-ball DM in parameter space complementary to terrestrial bounds. We put further constraints on DM that is captured by white dwarfs, considering the formation and self-gravitational collapse of a DM core which heats the star via decays and annihilations within the core. It is also intriguing that the DM-induced ignition discussed in this work provide an alternative mechanism of triggering supernovae from sub-Chandrasekhar, non-binary progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا