ترغب بنشر مسار تعليمي؟ اضغط هنا

A census of zeta functions of quartic K3 surfaces over F_2

168   0   0.0 ( 0 )
 نشر من قبل Andrew Sutherland
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the complete set of candidates for the zeta function of a K3 surface over F_2 consistent with the Weil conjectures, as well as the complete set of zeta functions of smooth quartic surfaces over F_2. These sets differ substantially, but we do identify natural subsets which coincide. This gives some numerical evidence towards a Honda-Tate theorem for transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of Taelman, in which one must allow an uncontrolled base field extension.



قيم البحث

اقرأ أيضاً

95 - Bjorn Poonen 2017
In 2005, Kayal suggested that Schoofs algorithm for counting points on elliptic curves over finite fields might yield an approach to factor polynomials over finite fields in deterministic polynomial time. We present an exposition of his idea and then explain details of a generalization involving Pilas algorithm for abelian varieties.
Let $k$ be a number field. We give an explicit bound, depending only on $[k:mathbf{Q}]$ and the discriminant of the N{e}ron--Severi lattice, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of isogenous CM elliptic curves. As an application, we show that the Brauer--Manin set for such a variety is effectively computable. Conditional on the Generalised Riemann Hypothesis, we also give an explicit bound, depending only on $[k:mathbf{Q}]$, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface attached to a product of CM elliptic curves. In addition, we show how to obtain a bound, depending only on $[k:mathbf{Q}]$, on the number of $mathbf{C}$-isomorphism classes of singular K3 surfaces defined over $k$, thus proving an effective version of the strong Shafarevich conjecture for singular K3 surfaces.
We study the dynamics of maps arising from the composition of two non-commuting involution on a K3 surface. These maps are a particular example of reversible maps, i.e., maps with a time reversing symmetry. The combinatorics of the cycle distribution of two non-commuting involutions on a finite phase space was studied by Roberts and Vivaldi. We show that the dynamical systems of these K3 surfaces satisfy the hypotheses of their results, providing a description of the cycle distribution of the rational points over finite fields. Furthermore, we extend the involutions to include the case where there are degenerate fibers and prove a description of the cycle distribution in this more general situation.
Let $k$ be a number field. In the spirit of a result by Yongqi Liang, we relate the arithmetic of rational points over finite extensions of $k$ to that of zero-cycles over $k$ for Kummer varieties over $k$. For example, for any Kummer variety $X$ ove r $k$, we show that if the Brauer-Manin obstruction is the only obstruction to the Hasse principle for rational points on $X$ over all finite extensions of $k$, then the ($2$-primary) Brauer-Manin obstruction is the only obstruction to the Hasse principle for zero-cycles of any given odd degree on $X$ over $k$. We also obtain similar results for products of Kummer varieties, K3 surfaces and rationally connected varieties.
Let $K$ be a 1-dimensional function field over an algebraically closed field of characteristic $0$, and let $A/K$ be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in $A(bar{K})$. More precisely, we prove th at there are constants $C_1,C_2>0$ such that the normalized Bernoulli-part of the canonical height is bounded below by $$ hat{h}_A^{mathbb{B}}(P) ge C_1bigl[K(P):Kbigr]^{-2} $$ for all points $Pin{A(bar{K})}$ whose height satisfies $0<hat{h}_A(P)le{C_2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا