ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lehmer-type height lower bound for abelian surfaces over function fields

181   0   0.0 ( 0 )
 نشر من قبل Nicole Looper
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $K$ be a 1-dimensional function field over an algebraically closed field of characteristic $0$, and let $A/K$ be an abelian surface. Under mild assumptions, we prove a Lehmer-type lower bound for points in $A(bar{K})$. More precisely, we prove that there are constants $C_1,C_2>0$ such that the normalized Bernoulli-part of the canonical height is bounded below by $$ hat{h}_A^{mathbb{B}}(P) ge C_1bigl[K(P):Kbigr]^{-2} $$ for all points $Pin{A(bar{K})}$ whose height satisfies $0<hat{h}_A(P)le{C_2}$.



قيم البحث

اقرأ أيضاً

75 - Jiangwei Xue , Chia-Fu Yu , 2021
In the paper [On superspecial abelian surfaces over finite fields II. J. Math. Soc. Japan, 72(1):303--331, 2020], Tse-Chung Yang and the first two current authors computed explicitly the number $lvert mathrm{SSp}_2(mathbb{F}_q)rvert$ of isomorphism c lasses of superspecial abelian surfaces over an arbitrary finite field $mathbb{F}_q$ of even degree over the prime field $mathbb{F}_p$. There it was assumed that certain commutative $mathbb{Z}_p$-orders satisfy an etale condition that excludes the primes $p=2, 3, 5$. We treat these remaining primes in the present paper, where the computations are more involved because of the ramifications. This completes the calculation of $lvert mathrm{SSp}_2(mathbb{F}_q)rvert$ in the even degree case. The odd degree case was previous treated by Tse-Chung Yang and the first two current authors in [On superspecial abelian surfaces over finite fields. Doc. Math., 21:1607--1643, 2016]. Along the proof of our main theorem, we give the classification of lattices over local quaternion Bass orders, which is a new input to our previous works.
We provide in this paper an upper bound for the number of rational points on a curve defined over a one variable function field over a finite field. The bound only depends on the curve and the field, but not on the Jacobian variety of the curve.
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on th e degree of a minimal isogeny between two isogenous elliptic curves. We also give several corollaries of these two results.
Let $Y$ be a principal homogeneous space of an abelian surface, or a K3 surface, over a finitely generated extension of $mathbb{Q}$. In 2008, Skorobogatov and Zarhin showed that the Brauer group modulo algebraic classes $text{Br}, Y/ text{Br}_1, Y$ i s finite. We study this quotient for the family of surfaces that are geometrically isomorphic to a product of isogenous non-CM elliptic curves, as well as the related family of geometrically Kummer surfaces; both families can be characterized by their geometric Neron-Severi lattices. Over a field of characteristic $0$, we prove that the existence of a strong uniform bound on the size of the odd-torsion of $text{Br}, Y / text{Br}_1, Y$ is equivalent to the existence of a strong uniform bound on integers $n$ for which there exist non-CM elliptic curves with abelian $n$-division fields. Using the same methods we show that, for a fixed prime $p$, a number field $k$ of fixed degree $r$, and a fixed discriminant of the geometric Neron-Severi lattice, $(text{Br}, Y / text{Br}_1, Y)[p^infty]$ is bounded by a constant that depends only on $p$, $r$, and the discriminant.
113 - Amilcar Pacheco 2006
Let $k$ be a field of characteristic $q$, $cac$ a smooth geometrically connected curve defined over $k$ with function field $K:=k(cac)$. Let $A/K$ be a non constant abelian variety defined over $K$ of dimension $d$. We assume that $q=0$ or $>2d+1$. L et $p e q$ be a prime number and $cactocac$ a finite geometrically textsc{Galois} and etale cover defined over $k$ with function field $K:=k(cac)$. Let $(tau,B)$ be the $K/k$-trace of $A/K$. We give an upper bound for the $bbz_p$-corank of the textsc{Selmer} group $text{Sel}_p(Atimes_KK)$, defined in terms of the $p$-descent map. As a consequence, we get an upper bound for the $bbz$-rank of the textsc{Lang-Neron} group $A(K)/tauB(k)$. In the case of a geometric tower of curves whose textsc{Galois} group is isomorphic to $bbz_p$, we give sufficient conditions for the textsc{Lang-Neron} group of $A$ to be uniformly bounded along the tower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا