ﻻ يوجد ملخص باللغة العربية
This is a follow-up study of a work by Kramers et al. (2013) on an unusual diamond-rich rock found in the SW side of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost pure carbon. Transmission Electron Microscopy and X-ray diffraction results reveal that Hypatia is made of defect-rich diamond containing lonsdaleite and deformation bands. These characteristics are compatible with an impact origin on Earth and/or in space. We analyzed concentrations and isotopic compositions of all five noble gases and nitrogen in several mg sized Hypatia samples. These data confirm that Hypatia is extra-terrestrial. The sample is rich in trapped noble gases with an isotopic composition close to the meteoritic Q component. 40Ar/36Ar ratios in individual steps are as low as 0.4. Concentrations of cosmic-ray produced 21Ne correspond to a nominal cosmic-ray exposure age of ca. 0.1 Myr if produced in a typical m-sized meteoroid. Such an atypically low nominal exposure age suggests high shielding in a considerably larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the decay of extinct 129I) is observed (129Xe/132Xe = 1.18 +/- 0.03). Two N components are present, an isotopically heavy component ({delta}15N = +20 permil) released at low temp. and a major light component ({delta}15N = -110 permil) at higher temp. This disequilibrium in N suggests that the diamonds in Hypatia were formed in space. Our data are broadly consistent with concentrations and isotopic compositions of noble gases in at least three different types of carbon-rich meteoritic materials. However, Hypatia does not seem to be related to any of these materials, but may have sampled a similar cosmochemical reservoir. Our study does not confirm the presence of exotic noble gases that led Kramers et al. to propose that Hypatia is a remnant of a comet that impacted the Earth.
The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed
The determination of Saturns atmospheric noble gas abundances are critical to understanding the formation and evolution of Saturn, and giant planets in general. These measurements can only be performed with an entry probe. A Saturn probe will address
Planetary embryos form protoplanets via mutual collisions, which can lead to the development of magma oceans. During their solidification, large amounts of the mantles volatile contents may be outgassed. The resulting H$_2$O/CO$_2$ dominated steam at
The energy associated with giant impacts is large enough to generate global magma oceans during Earths accretion. However, geochemical evidence requiring a terrestrial magma ocean is scarce. Here we present evidence for at least two separate magma oc
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Plutos geological activity[1,2]. Composed of molecular nitrogen, methane, and carbon monoxide ices[3], but dominated by N2-ice, this ice layer is organized into c