ترغب بنشر مسار تعليمي؟ اضغط هنا

Convection in a volatile nitrogen-ice-rich layer drives Plutos geological vigor

126   0   0.0 ( 0 )
 نشر من قبل Kelsi Singer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Plutos geological activity[1,2]. Composed of molecular nitrogen, methane, and carbon monoxide ices[3], but dominated by N2-ice, this ice layer is organized into cells or polygons, typically ~10-40 km across, that resemble the surface manifestation of solid state convection[1,2]. Here we report, based on available rheological measurements[4], that solid layers of N2 ice approximately greater than 1 km thick should convect for estimated present-day heat flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-km-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of N2-ice viscosity implies that the SP ice layer convects in the so-called sluggish lid regime[5], a unique convective mode heretofore not definitively observed in the Solar System. Average surface horizontal velocities of a few cm/yr imply surface transport or renewal times of ~500,000 years, well under the 10 Myr upper limit crater retention age for Sputnik Planum[2]. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help explain the high albedos of some of them.

قيم البحث

اقرأ أيضاً

Plutos surface is geologically complex because of volatile ices that are mobile on seasonal and longer time scales. Here we analyzed New Horizons LEISA spectral data to globally map the nitrogen ice, including nitrogen with methane diluted in it. Our goal was to learn about the seasonal processes influencing ice redistribution, to calculate the globally averaged energy balance, and to place a lower limit on Plutos N2 inventory. We present the average latitudinal distribution of nitrogen and investigate the relationship between its distribution and topography on Pluto by using maps that include the shifted bands of methane in solid solution with nitrogen to more completely map the distribution of the nitrogen ice. We find that the global average bolometric albedo is 0.83 +- 0.11, similar to that inferred for Triton, and that a significant fraction of Plutos N2 is stored in Sputnik Planitia. Under the assumption that Plutos nitrogen-dominated 11.5 microbar atmosphere is in vapor pressure equilibrium with the nitrogen ice, the ice temperature is 36.93 +/- 0.10 K, as measured by New Horizons. Combined with our global energy balance calculation, this implies that the average bolometric emissivity of Plutos nitrogen ice is probably in the range 0.47 - 0.72. This is consistent with the low emissivities estimated for Triton based on Voyager, and may have implications for Plutos atmospheric seasonal variations, as discussed below. The global pattern of volatile transport at the time of the encounter was from north to south, and the transition between condensation and sublimation within Sputnik Planitia is correlated with changes in the grain size and CH4 concentration derived from the spectral maps. The low emissivity of Plutos N2 ice suggests that Plutos atmosphere may undergo an extended period of constant pressure even as Pluto recedes from the Sun in its orbit.
Martian atmospheric neon (Ne) has been detected by Viking and also found as trapped gas in Martian meteorites, though its abundance and isotopic composition have not been well determined. Because the timescale of Ne loss via atmospheric escape estima ted from recent measurements with MAVEN is short (0.6--1 $times$ 10$^8$ years), the abundance and isotope composition of Martian atmospheric Ne reflect recent atmospheric gas supply mostly from volcanic degassing. Thus, it can serve as a probe for the volatile content of the interior. Here we show that the tentatively-informed atmospheric Ne abundance suggests recent active volcanism and the mantle being richer in Ne than Earths mantle today by more than a factor of 5--80. The estimated mantle Ne abundance requires efficient solar nebular gas capture or accretion of Ne-rich materials such as solar-wind-implanted dust in the planet formation stage, both of which provide important constraints on the abundance of other volatile elements in the interior and the accretion history of Mars. More precise determination of atmospheric Ne abundance and isotopic composition by in situ analysis or Mars sample return is crucial for distinguishing the possible origins of Ne.
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find a carbon atom. These two tasks can be accomplished via photochemistry, lightning, impacts, or volcanism. The key requirements for producing appreciable amounts of HCN are the free availability of N$_2$ and a local carbon to oxygen ratio of C/O $geq 1$. We discuss the chemical mechanisms by which HCN can be formed and destroyed on rocky exoplanets with Earth-like N$_2$ content and surface water inventories, varying the oxidation state of the dominant carbon-containing atmospheric species. HCN is most readily produced in an atmosphere rich in methane (CH$_4$) or acetylene (C$_2$H$_2$), but can also be produced in significant amounts ($> 1$ ppm) within CO-dominated atmospheres. Methane is not necessary for the production of HCN. We show how destruction of HCN in a CO$_2$-rich atmosphere depends critically on the poorly-constrained energetic barrier for the reaction of HCN with atomic oxygen. We discuss the implications of our results for detecting photochemically produced HCN, for concentrating HCN on the planets surface, and its importance for prebiotic chemistry.
Ice-rich planets formed exterior to the iceline and thus are expected to contain substantial amount of ice (volatiles). The high ice content leads to unique conditions in the interior, under which the structure of a planet may be affected by ice inte raction with other metals. We use experimental data of ice-rock interaction at high pressure, and calculate detailed thermal evolution for possible interior configurations of ice-rich planets. We model the effect of migration inward on the ice-rich interior by including the influences of stellar flux and envelope mass loss. We find that rock and ice are expected to remain mixed, due to miscibility at high pressure, in most of the planet interior (>99% in mass) for a wide range of planetary masses. We also find that the deep interior of planetary twins that have migrated to different distances from the star are usually similar, if no mass loss occurs. Significant mass loss results in an interior structure of a mixed ice and rock ball, surrounded by a volatile atmosphere of less than 1% of the planets mass. In this case, the mass of the atmosphere of water / steam is limited by the ice-rock interaction. We conclude that when ice is abundant in planetary interiors the ice and rock tend to stay mixed for giga-years, and the interior structure differs from the simple layered structure that is usually assumed. This finding could have significant consequences on planets observed properties, and it should be considered in exoplanets characterisation.
Haze in Plutos atmosphere was detected in images by both the Long Range Reconnaissance Imager (LORRI) and the Multispectral Visible Imaging Camera (MVIC) on New Horizons. LORRI observed haze up to altitudes of at least 200 km above Plutos surface at solar phase angles from ~20{deg} to ~169{deg}. The haze is structured with about ~20 layers, and the extinction due to haze is greater in the northern hemisphere than at equatorial or southern latitudes. However, more haze layers are discerned at equatorial latitudes. A search for temporal variations found no evidence for motions of haze layers (temporal changes in layer altitudes) on time scales of 2 to 5 hours, but did find evidence of changes in haze scale height above 100 km altitude. An ultraviolet extinction attributable to the atmospheric haze was also detected by the ALICE ultraviolet spectrograph on New Horizons. The haze particles are strongly forward-scattering in the visible, and a microphysical model of haze is presented which reproduces the visible phase function just above the surface with 0.5 {mu}m spherical particles, but also invokes fractal aggregate particles to fit the visible phase function at 45 km altitude and account for UV extinction. A model of haze layer generation by orographic excitation of gravity waves is presented. This model accounts for the observed layer thickness and distribution with altitude. Haze particles settle out of the atmosphere and onto Plutos surface, at a rate sufficient to alter surface optical properties on seasonal time scales. Plutos regional scale albedo contrasts may be preserved in the face of the haze deposition by atmospheric collapse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا