ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in CuCl/Si: possible excitonic pairing?

55   0   0.0 ( 0 )
 نشر من قبل Sonny H. Rhim
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The search for superconductivity with higher transition temperature ($T_C$) has long been a challenge in research efforts ever since its first discovery in 1911. The effort has led to the discovery of various kinds of superconductors and progress in the understanding of this intriguing phenomenon. The increase of $T_C$ has also evolved; however, the dream of realizing room-temperature superconductivity is far from reality. For superconductivity to emerge, the effective quasiparticle interaction should overcome the repulsive Coulomb interaction. This can be realized via lattice or spin degrees of freedom. An alternative pairing mechanism, the excitonic mechanism, was proposed 50 years ago, hoping to achieve higher $T_C$ than by phonon mediation. As none of physics principles has ever prevented excitonic pairing, the excitonic pairing mechanism is revisited here and we show that the effective quasiparticle interaction without lattice and spin can be attractive solely electronically.

قيم البحث

اقرأ أيضاً

We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of H c2(T) in a weak field regime. In order to explain this result we have derived and solved Gorkov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.
An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of $d$-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of $s$-wave type from the nodeless gaps observed everywhere on the Fermi surface (FS). Here we propose an orbital-selective pairing state, dubbed $s tau_{3}$, as a natural explanation of these disparate properties. The pairing function, containing a matrix $tau_{3}$ in the basis of $3d$-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a $d$-wave-type sign change in the intraband pairing component whereas the quasiparticle excitation is fully gapped on the FS due to an $s$-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.
37 - Yanfeng Ge , Fan Zhang , 2015
Recently BCS superconductivity at 203 K has been discovery in a highly compressed hydrogen sulfide. We use first-principles calculations to systematically examine the effects of partially substituting the chalcogen atoms on the superconductivity of h ydrogen chalcogenides under high pressures. We find detailed trends of how the critical temperature changes with increasing the V-, VI- or VII-substitution rate, which highlight the key roles played by low atomic mass and by strong covalent metallicity. In particular, a possible record high critical temperature of 280 K is predicted in a stable H3S0.925P0.075 with the Im-3m structure under 250 GPa.
352 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
We report a comprehensive TF-muSR study of TiSe_2Cu_2. The magnetic penetration depth was found to saturate at low temperature as expected in an s-wave SC. As x is increased we find that the superfluid density increases and the size of the supercondu cting gap, calculated from the temperature dependence of the superfluid density, is approaching the BCS value. However, for low values of x, the gap is smaller than the weak-coupling BCS prediction suggesting that two superconducting gaps are present in the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا