ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Superconductivity Approaching Ice Point

38   0   0.0 ( 0 )
 نشر من قبل Yanfeng Ge
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently BCS superconductivity at 203 K has been discovery in a highly compressed hydrogen sulfide. We use first-principles calculations to systematically examine the effects of partially substituting the chalcogen atoms on the superconductivity of hydrogen chalcogenides under high pressures. We find detailed trends of how the critical temperature changes with increasing the V-, VI- or VII-substitution rate, which highlight the key roles played by low atomic mass and by strong covalent metallicity. In particular, a possible record high critical temperature of 280 K is predicted in a stable H3S0.925P0.075 with the Im-3m structure under 250 GPa.

قيم البحث

اقرأ أيضاً

Systematic studies of the NdFeAsOF superconducting energy gap via the point-contact Andreev-reflection (PCAR) spectroscopy are presented. The PCAR conductance spectra show at low temperatures a pair of gap-like peaks at about 4 - 7 mV indicating the superconducting energy gap and in most cases also a pair of humps at around 10 mV. Fits to the s-wave two-gap model of the PCAR conductance allowed to determine two superconducting energy gaps in the system. The energy-gap features however disappear already at T* = 15 to 20 K, much below the particular Tc of the junction under study. At T* a zero-bias conductance (ZBC) peak emerges, which at higher temperatures usually overwhelms the spectrum with intensity significantly higher than the conductance signal at lower temperatures. Possible causes of this unexpected temperature effect are discussed. In some cases the conductance spectra show just a reduced conductance around the zero-bias voltage, the effect persisting well above the bulk transition temperature. This indicates a presence of the pseudogap in the system.
The search for superconductivity with higher transition temperature ($T_C$) has long been a challenge in research efforts ever since its first discovery in 1911. The effort has led to the discovery of various kinds of superconductors and progress in the understanding of this intriguing phenomenon. The increase of $T_C$ has also evolved; however, the dream of realizing room-temperature superconductivity is far from reality. For superconductivity to emerge, the effective quasiparticle interaction should overcome the repulsive Coulomb interaction. This can be realized via lattice or spin degrees of freedom. An alternative pairing mechanism, the excitonic mechanism, was proposed 50 years ago, hoping to achieve higher $T_C$ than by phonon mediation. As none of physics principles has ever prevented excitonic pairing, the excitonic pairing mechanism is revisited here and we show that the effective quasiparticle interaction without lattice and spin can be attractive solely electronically.
We report a comprehensive TF-muSR study of TiSe_2Cu_2. The magnetic penetration depth was found to saturate at low temperature as expected in an s-wave SC. As x is increased we find that the superfluid density increases and the size of the supercondu cting gap, calculated from the temperature dependence of the superfluid density, is approaching the BCS value. However, for low values of x, the gap is smaller than the weak-coupling BCS prediction suggesting that two superconducting gaps are present in the sample.
We studied the temperature-pressure phase diagram of EuFe2As2 by measurements of the electrical resistivity. The antiferromagnetic spin-density-wave transition at T_0 associated with the FeAs-layers is continuously suppressed with increasing pressure , while the antiferromagnetic ordering temperature of the Eu 2+ moments seems to be nearly pressure independent up to 2.6 GPa. Above 2 GPa a sharp drop of the resistivity, rho(T), indicates the onset of superconductivity at T_c approx 29.5 K. Surprisingly, on further reducing the temperature rho(T) is increasing again and exhibiting a maximum caused by the ordering of the Eu 2+ moments, a behavior which is reminiscent of re-entrant superconductivity as it is observed in the ternary Chevrel phases or in the rare-earth nickel borocarbides.
The soft ferro-electric phonon in SrTiO3 observed with optical spectroscopy has an extraordinary strong spectral weight which is much stronger than expected in the limit of a perfectly ionic compound. The charged phonon in SrTiO3 is caused by the clo se-to-covalent character of the Ti-O ionic bond and implies a strong coupling between the soft ferro-electric phonon and the inter band transitions across the 3 eV gap of SrTiO3. We demonstrate that this coupling leads, in addition to the charged phonon effect, to a pairing interaction involving the exchange of two transverse optical phonons. This process owes its relevance to the strong electron-phonon coupling and to the fact that the interaction mediated by a single transverse optical phonon vanishes at low electron density. We use the experimental soft phonon spectral weight to calculate the strength of the bi-phonon mediated pairing interaction in the electron doped material and show that it is of the correct magnitude when compared to the experimental value of the superconducting critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا