ﻻ يوجد ملخص باللغة العربية
Rare-earth ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both, implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%.
Contrary to the well known spin qubits, rare-earth qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crys
Results of absolute light output measurements on strontium and barium fluoride doped with PrF$_3$ and CeF$_3$ are presented and compared with scintillators having well-known light output (NaI-Tl, CsI-Tl, BGO). For pure SrF$_2$ crystal we obtain a value of about 28600 photons/MeV.
We describe a method for creating small quantum processors in a crystal stoichiometric in an optically active rare earth ion. The crystal is doped with another rare earth, creating an ensemble of identical clusters of surrounding ions, whose optical
We report on hybrid circuit QED experiments with focused ion beam implanted Er$^{3+}$ ions in Y$_2$SiO$_5$ coupled to an array of superconducting lumped element microwave resonators. The Y$_2$SiO$_5$ crystal is divided into several areas with distinc
The inhomogeneity of an electron spin ensemble as well as fluctuating environment acting upon individual spins drastically shorten the spin coherence time $T_2$ and hinder coherent spin manipulation. We show that this problem can be solved by the sim