ﻻ يوجد ملخص باللغة العربية
The connection between black hole thermodynamics and chemistry is extended to the lower-dimensional regime by considering the rotating and charged BTZ metric in the $(2+1)$-D and a $(1+1)$-D limits of Einstein gravity. The Smarr relation is naturally upheld in both BTZ cases, where those with $Q e 0$ violate the Reverse Isoperimetric Inequality and are thus superentropic. The inequality can be maintained, however, with the addition of a new thermodynamic work term associated with the mass renormalization scale. The $Drightarrow 0$ limit of a generic $D+2$-dimensional Einstein gravity theory is also considered to derive the Smarr and Komar relations, although the opposite sign definitions of the cosmological constant and thermodynamic pressure from the $D>2$ cases must be adopted in order to satisfy the relation. The requirement of positive entropy implies a lower bound on the mass of a $(1+1)$-D black hole. Promoting an associated constant of integration to a thermodynamic variable allows one to define a rotation in one spatial dimension. Neither the $D=3$ nor the $D rightarrow 2$ black holes exhibit any interesting phase behaviour.
Black holes in $d < 3$ spatial dimensions are studied from the perspective of the corpuscular model of gravitation, in which black holes are described as Bose-Einstein condensates of (virtual soft) gravitons. In particular, since the energy of these
We consider the $Dto 3$ limit of Gauss-Bonnet gravity. We find two distinct but simil
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spe
We consider two different effective polymerization schemes applied to D-dimensional, spherically symmetric black hole interiors. It is shown that polymerization of the generalized area variable alone leads to a complete, regular, single-horizon space