ﻻ يوجد ملخص باللغة العربية
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact such modifications have on the evaporation rate of the black hole becomes more clear. As an application, we study the case for which the thermal dimension is reduced to two.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkows
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu
We consider the black hole information problem in an explicitly defined spacetime modelling black hole evaporation. Using this context we review basic aspects of the problem, with a particular effort to be unambiguous about subtle topics, for instanc
Black holes in $d < 3$ spatial dimensions are studied from the perspective of the corpuscular model of gravitation, in which black holes are described as Bose-Einstein condensates of (virtual soft) gravitons. In particular, since the energy of these
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source repre