ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal dimensional reduction and black hole evaporation

115   0   0.0 ( 0 )
 نشر من قبل Iarley P. Lobo Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact such modifications have on the evaporation rate of the black hole becomes more clear. As an application, we study the case for which the thermal dimension is reduced to two.

قيم البحث

اقرأ أيضاً

An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkows ki space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into hard particles and soft particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the $S$-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu te the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
We consider the black hole information problem in an explicitly defined spacetime modelling black hole evaporation. Using this context we review basic aspects of the problem, with a particular effort to be unambiguous about subtle topics, for instanc e precisely what is meant by entropy in various circumstances. We then focus on questions of unitarity, and argue that commonly invoked semiclassical statements of long term, evaporation time, and Page time unitarity may all be violated even if physics is fundamentally unitary. This suggests that there is no horizon firewall. We discuss how the picture is modified for regular (nonsingular) evaporation models. We also compare our conclusions to recent holographic studies, and argue that they are mutually compatible.
Black holes in $d < 3$ spatial dimensions are studied from the perspective of the corpuscular model of gravitation, in which black holes are described as Bose-Einstein condensates of (virtual soft) gravitons. In particular, since the energy of these gravitons should increase as the black hole evaporates, eventually approaching the Planck scale, the lower dimensional cases could provide important insight into the late stages and end of Hawking evaporation. We show that the occupation number of gravitons in the condensate scales holographically in all dimensions as $N_d sim left(L_d/ell_{rm p}right)^{d-1}$, where $L_d$ is the relevant length for the system in the $(1+d)$-dimensional space-time. In particular, this analysis shows that black holes cannot contain more than a few gravitons in $d=1$. Since dimensional reduction is a common feature of many models of quantum gravity, this result can shed light on the end of the Hawking evaporation. We also consider $(1+1)$-dimensional cosmology in the context of corpuscular gravity, and show that the Friedmann equation reproduces the expected holographic scaling as in higher dimensions.
122 - F. Canfora , G. Vilasi 2003
A model is proposed to describe a transition from a Schwarzschild black hole of mass $M_{0}$ to a Schwarzschild black hole of mass $M_{1}$ $leq M_{0}$. The basic equations are derived from the non-vacuum Einstein field equations taking a source repre senting a null scalar field with a nonvanishing trace anomaly. It is shown that the nonvanishing trace anomaly of the scalar field prevents a complete evaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا