ﻻ يوجد ملخص باللغة العربية
We have developed an experimental system to simultaneously observe surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray scattering (GIXS) in gas pressures as high as the multi-Torr regime, while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano- to the meso-scale. The grazing incidence geometry provides tunable depth sensitivity while scattered X-rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and in ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O$_2$ atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent X-ray scattering experiments can greatly benefit from the concepts we present here.
Photoelectron spectroscopy (PES) and microscopy are highly demanded for exploring morphologically complex solid-gas and solid-liquid interfaces under realistic conditions, but the very small electron mean free path inside the dense media imposes seri
The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic x-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard x-ray range. These two techniques offer powerful, complementary methods of characterizatio
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-r
We describe the concepts and technical realization of the high-resolution soft-X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for Resonant Inelastic X-ray Scattering (RIXS) and Angle-Resolved Photoelectron Spectr
The optics of a number of future X-ray telescopes will have very long focal lengths (10 - 20 m), and will consist of a number of nested/stacked thin, grazing-incidence mirrors. The optical quality characterization of a real mirror can be obtained via