ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

119   0   0.0 ( 0 )
 نشر من قبل Anne-Luise Poley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). This glue has several disadvantages, which motivated the search for an alternative. This paper presents a study concerning the use of six ultra-violet (UV) cure glues and a glue pad for use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, the thermal conduction and shear strength, thermal cycling, radiation hardness, corrosion resistance and shear strength tests. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives. Results from electrical tests of first prototype modules constructed using these glues are presented.



قيم البحث

اقرأ أيضاً

In the high luminosity era of the Large Hadron Collider, the HL-LHC, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant inc rease in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.
78 - Jike Wang 2017
ATLAS is making extensive efforts towards preparing a detector upgrade for the high luminosity operations of the LHC (HL-LHC), which will commence operation in about 10 years. The current ATLAS Inner Detector will be replaced by an all-silicon tracke r (comprising an inner Pixel tracker and outer Strip tracker). The software currently used for the new silicon tracker is broadly inherited from that used for the LHC Run-1 and Run-2, but many new developments have been made to better fulfill the future detector and operation requirements. One aspect in particular which will be highlighted is the simulation software for the Strip tracker. The available geometry description software (including the detailed description for all the sensitive elements, the services, etc.) did not allow for accurate modelling of the planned detector design. A range of sensors/layouts for the Strip tracker are being considered and must be studied in detailed simulations in order to assess the performance and ascertain that requirements are met. For this, highly flexibility geometry building is required from the simulation software. A new Xml-based detector description framework has been developed to meet the aforementioned challenges. We will present the design of the framework and its validation results.
75 - Zhijun Liang 2018
In next ten years, the Large Hadron Collider will be upgraded to the High Luminosity LHC (HL-LHC), resulting in ten time more integrated luminosity. To withstand the much harsher radiation and occupancy conditions of the HL-LHC, the inner tracker of the ATLAS detector must be redesigned and rebuilt completely. The design of the ATLAS Upgrade inner tracker (ITk) has already been defined. It consists of several layers of silicon particle detectors. The innermost layers will be composed of silicon pixel sensors, and the outer layers will consist of silicon microstrip sensors. This paper will focus on the latest research and development activities performed by ITk strips community with respect to the assembly and test of the strip modules and the stave and petal structures.
The steadily increasing luminosity of the LHC requires an upgrade with high-rate and high-resolution detector technology for the inner end cap of the ATLAS muon spectrometer: the New Small Wheels (NSW). In order to achieve the goal of precision track ing at a hit rate of about 15 kHz/cm$^2$ at the inner radius of the NSW, large area Micromegas quadruplets with 100,microns spatial resolution per plane have been produced. % IRFU, from the CEA research center of Saclay, is responsible for the production and validation of LM1 Micromegas modules. The construction, production, qualification and validation of the largest Micromegas detectors ever built are reported here. Performance results under cosmic muon characterisation will also be discussed.
The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6*10^34 cm^-2 s^-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb^-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1*10^16 1 MeV n_eq/cm^2 . In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 um FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 Um thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 Um thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 um strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا