ﻻ يوجد ملخص باللغة العربية
We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20 moment of light, asymmetry, and smoothness. Three different non-local datasets are used, ALHAMBRA and SXDS (examples of deep ground-based surveys), and COSMOS (deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels.We suggest that diagnostic diagrams based on 2 - 3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.
Methods. We used different galaxy classification techniques: human labeling, multi-photometry diagrams, Naive Bayes, Logistic Regression, Support Vector Machine, Random Forest, k-Nearest Neighbors, and k-fold validation. Results. We present results o
We attempt to visually classify the morphologies of 18190 molecular clouds, which are identified in the $^{12}$CO(1-0) spectral line data over $sim$ 450 deg$^{2}$ of the second Galactic quadrant from the Milky Way Imaging Scroll Painting project (MWI
There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or a investigation
We study the morphological transformation from late types to early types and the quenching of galaxies with the seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS). Both early type galaxies and late type galaxies are found to have bimod
We present an extended morphometric system to automatically classify galaxies from astronomical images. The new system includes the original and modifie