ترغب بنشر مسار تعليمي؟ اضغط هنا

The morphological transformation and the quenching of galaxies

133   0   0.0 ( 0 )
 نشر من قبل Chenxu Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the morphological transformation from late types to early types and the quenching of galaxies with the seventh Data Release (DR7) of the Sloan Digital Sky Survey (SDSS). Both early type galaxies and late type galaxies are found to have bimodal distributions on the star formation rate versus stellar mass diagram ($lg SFR - lg M_*$). We therefore classify them into four types: the star-forming early types (sEs), the quenched early types (qEs), the star-forming late types (sLs) and the quenched late types (qLs). We checked many parameters on various environmental scales for their potential effects on the quenching rates of late types and early types, as well as the early type fractions among star-forming galaxies and those among quenched galaxies. These parameters include: the stellar mass $M_*$, and the halo mass $M_{halo}$; the small-scale environmental parameters, such as the halo centric radius $R_p/r_{180}$ and the third nearest neighbor distances ($d_{3nn}$); the large-scale environmental parameters, specifically whether they are located in clusters, filaments, sheets, or voids. We found that the morphological transformation is mainly regulated by the stellar mass. Quenching is mainly driven by the stellar mass for more massive galaxies and by the halo mass for galaxies with smaller stellar masses. In addition, we see an overall stronger halo quenching effect in early type galaxies, which might be attributed to their lacking of cold gas or earlier accretion into the massive host halos.



قيم البحث

اقرأ أيضاً

We examine the spheroid growth and star formation quenching experienced by galaxies from z~3 to the present by studying the evolution with redshift of the quiescent and spheroid-dominated fractions of galaxies from the CANDELS and GAMA surveys. We co mpare the observed fractions with predictions from a semi-analytic model which includes prescriptions for bulge growth and AGN feedback due to mergers and disk instabilities. We facilitate direct morphological comparison by converting our model bulge-to-total stellar mass ratios to Sersic indices. We then subdivide our population into the four quadrants of the sSFR-Sersic index plane and study the buildup of each of these subpopulations. We find that the fraction of star forming disks declines steadily, while the fraction of quiescent spheroids builds up over cosmic time. The fractions of star forming spheroids and quiescent disks are both non-negligible, and stay nearly constant over the period we have studied, at about 10% and 15-20% respectively. Our model is qualitatively successful at reproducing the evolution of the two main populations (star forming disk-dominated galaxies and quiescent spheroid-dominated galaxies), and approximately reproduces the relative fractions of all four types, but predicts a stronger decline in star forming spheroids, and increase in quiescent disks, than seen in the observations. A model with an additional channel for bulge growth via disk instabilities agrees better overall with the observations than a model in which bulges may grow only through mergers. We study evolutionary tracks of some individual galaxies as they experience morphological transformation and quenching, and examine the importance of different physical drivers of this transformation (major and minor mergers and disk instabilities). We find that complex histories with multiple transformative events are the norm.
63 - M.N. Bremer 2018
We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with $10.25<{rm log}(M_*/ M_odot)<10.75$ and $z<0.2$ classified according to their intrinsic $u^*-r^*$ colour. From single component Sersic fits, we find that the stellar mass-sensitive $K-$band profiles of red and green galaxy populations are very similar, while $g-$band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley $sim 1-2$~Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a r^ole in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation.
In a hierarchical Universe clusters grow via the accretion of galaxies from the field, groups and even other clusters. As this happens, galaxies can lose their gas reservoirs via different mechanisms, eventually quenching their star-formation. We exp lore the diverse environmental histories of galaxies through a multi-wavelength study of the combined effect of ram-pressure stripping and group processing in Abell 963, a massive growing cluster at $z=0.2$ from the Blind Ultra Deep HI Environmental Survey (BUDHIES). We incorporate hundreds of new optical redshifts (giving a total of 566 cluster members), as well as Subaru and XMM-Newton data from LoCuSS, to identify substructures and evaluate galaxy morphology, star-formation activity, and HI content (via HI deficiencies and stacking) out to $3times R_{200}$. We find that Abell 963 is being fed by at least 7 groups, that contribute to the large number of passive galaxies outside the cluster core. More massive groups have a higher fraction of passive and HI-poor galaxies, while low-mass groups host younger (often interacting) galaxies. For cluster galaxies not associated with groups we corroborate our previous finding that HI gas (if any) is significantly stripped via ram-pressure during their first passage through the intra-cluster medium, and find mild evidence for a starburst associated with this event. In addition, we find an overabundance of morphologically peculiar and/or star-forming galaxies near the cluster core. We speculate that these arise as groups pass through the cluster (post-processing). Our study highlights the importance of environmental quenching and the complexity added by evolving environments.
We present the discovery of a prominent bifurcation between early-type galaxies and late-type galaxies, in [4.6]-[12] micron colors from the Wide Field Infrared Survey Explorer (WISE). We then use an emission-line diagnostic comparison sample to expl ore the nature of objects found both within, and near the edges of, this WISE infrared transition zone (IRTZ). We hypothesize that this birfurcation might be due to the presence of hot dust and PAH emission features in late-type galaxies. Using a sample of galaxies selected through the Shocked Poststarburst Galaxy Survey (SPOGS), we are able to identify galaxies with strong Balmer absorption (EW(Hdelta)>5 Angstroms) as well as emission lines inconsistent with star formation (deemed SPOG candidates, or SPOGs*) that lie within the optical green valley. Seyferts and low ionization nuclear emission line regions, whose u-r colors tend to be red, are strongly represented within the IRTZ, whereas SPOGs* tend to sit near the star-forming edge. Although AGN are well-represented in the IRTZ, we argue that the dominant IRTZ population are galaxies that are in late stages of transitioning across the optical green valley, shedding the last of their remnant interstellar media.
The observable properties of galaxies depend on both internal processes and the external environment. In terms of the environmental role, we still do not have a clear picture of the processes driving the transformation of galaxies. The use of proxies for environment (e.g., host halo mass, distance to the N^th nearest neighbour, etc.), as opposed to the real physical conditions (e.g., hot gas density) may bear some responsibility for this. Here we propose a new method that directly links galaxies to their local environments, by using spatial cross-correlations of galaxy catalogues with maps from large-scale structure surveys (e.g., thermal Sunyaev-Zeldovich [tSZ] effect, diffuse X-ray emission, weak lensing of galaxies or the CMB). We focus here on the quenching of galaxies and its link to local hot gas properties. Maps of galaxy overdensity and quenched fraction excess are constructed from volume-limited SDSS catalogs, which are cross-correlated with tSZ effect and X-ray maps from Planck and ROSAT, respectively. Strong signals out to Mpc scales are detected for most cross-correlations and are compared to predictions from the EAGLE and BAHAMAS cosmological hydrodynamical simulations. The simulations successfully reproduce many, but not all, of the observed power spectra, with an indication that environmental quenching may be too efficient in the simulations. We demonstrate that the cross-correlations are sensitive to both the internal (e.g., AGN and stellar feedback) and external processes (e.g., ram pressure stripping, harassment, strangulation, etc.) responsible for quenching. The methods outlined in this paper can be adapted to other observables and, with upcoming surveys, will provide a stringent test of physical models for environmental transformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا