ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters

100   0   0.0 ( 0 )
 نشر من قبل Alexandro Saro
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We cross-match galaxy cluster candidates selected via their Sunyaev-Zeldovich effect (SZE) signatures in 129.1 deg$^2$ of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey (DES) science verification data. We identify 25 clusters between $0.1lesssim zlesssim 0.8$ in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness $lambda$-mass relation with the following function $langlelnlambda|M_{500}ranglepropto B_lambdaln M_{500}+C_lambdaln E(z)$ and use SPT-SZ cluster masses and RM richnesses $lambda$ to constrain the parameters. We find $B_lambda= 1.14^{+0.21}_{-0.18}$ and $C_lambda=0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $sigma_{ln M|lambda} = 0.18^{+0.08}_{-0.05}$ at a characteristic richness $lambda=70$. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ selected clusters with RM counterparts is consistent with expectations and that the fraction of RM selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a sub-dominant population characterized by larger offsets. We also cross-match the RM catalog with SPT-SZ candidates below the official catalog threshold significance $xi=4.5$, using the RM catalog to provide optical confirmation and redshifts for additional low-$xi$ SPT-SZ candidates.In this way, we identify 15 additional clusters with $xiin [4,4.5]$ over the redshift regime explored by RM in the overlapping region between DES science verification data and the SPT-SZ survey.



قيم البحث

اقرأ أيضاً

136 - R. Capasso , A. Saro , J. J. Mohr 2017
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based on $sim$3000 passive, non-emis sion line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zeldovich effect (SZE) in the 2500~deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $Y_X$ measurements. However, the dynamical masses are lower (at the 2.2$sigma$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a $Lambda$CDM model with external cosmological priors, including CMB anisotropy data from Planck. The discrepancy grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $eta=0.63^{+0.13}_{-0.08}pm0.06$ (statistical and systematic), corresponding to a $2.6sigma$ discrepancy.
73 - John F. Wu 2017
We present new Herschel observations of four massive, Sunyaev-Zeldovich Effect (SZE)-selected clusters at $0.3 leq z leq 1.1$, two of which have also been observed with ALMA. We detect 19 Herschel/PACS counterparts to spectroscopically confirmed clus ter members, five of which have redshifts determined via CO($4-3$) and [CI](${}^3P_1 - {}^3P_0$) lines. The mean [CI]/CO line ratio is $0.19 pm 0.07$ in brightness temperature units, consistent with previous results for field samples. We do not detect significant stacked ALMA dust continuum or spectral line emission, implying upper limits on mean interstellar medium (H$_2$ + HI) and molecular gas masses. An apparent anticorrelation of $L_{IR}$ with clustercentric radius is driven by the tight relation between star formation rate and stellar mass. We find average specific star formation rate log(sSFR/yr$^{-1}$) = -10.36, which is below the SFR$-M_*$ correlation measured for field galaxies at similar redshifts. The fraction of infrared-bright galaxies (IRBGs; $log (L_{IR}/L_odot) > 10.6$) per cluster and average sSFR rise significantly with redshift. For CO detections, we find $f_{gas} sim 0.2$, comparable to those of field galaxies, and gas depletion timescales of about 2 Gyr. We use radio observations to distinguish active galactic nuclei (AGNs) from star-forming galaxies. At least four of our 19 Herschel cluster members have $q_{IR} < 1.8$, implying an AGN fraction $f_{AGN} gtrsim 0.2$ for our PACS-selected sample.
We constrain the scaling relation between optical richness ($lambda$) and halo mass ($M$) for a sample of SDSS redMaPPer galaxy clusters within the context of the {it Planck} cosmological model. We use a forward modeling approach where we model the p robability distribution of optical richness for a given mass, $P(ln lambda| M)$. To model the abundance and the stacked lensing profiles, we use an emulator specifically built to interpolate the halo mass function and the stacked lensing profile for an arbitrary set of halo mass and redshift, which is calibrated based on a suite of high-resolution $N$-body simulations. We apply our method to 8,312 SDSS redMaPPer clusters with $20le lambda le 100$ and $0.10le z_{lambda}le0.33$, and show that the log-normal distribution model for $P(lambda|M)$, with four free parameters, well reproduces the measured abundances and lensing profiles simultaneously. The constraints are characterized by the mean relation, $leftlangle ln{lambda}rightrangle(M)=A+Bln(M/M_{rm pivot})$, with $A=3.207^{+0.044}_{-0.046}$ and $B=0.993^{+0.041}_{-0.055}$ (68%~CL), where the pivot mass scale $M_{rm pivot}=3times 10^{14} h^{-1}M_odot$, and the scatter $sigma_{mathrm{lnlambda}|M}=sigma_0+qln(M/M_{rm pivot})$ with $sigma_0=0.456^{+0.047}_{-0.039}$ and $q=-0.169^{+0.035}_{-0.026}$. We find that a large scatter in halo masses is required at the lowest richness bins ($20le lambda lesssim 30$) in order to reproduce the measurements. Without such a large scatter, the model prediction for the lensing profiles tends to overestimate the measured amplitudes. This might imply a possible contamination of intrinsically low-richness clusters due to the projection effects. Such a low-mass halo contribution is significantly reduced when applying our method to the sample of $30le lambda le 100$.
We present follow-up observations with the Sunyaev-Zeldovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+001 6. ACT-CL J0022-0036 is a newly-discovered, massive (10^15 Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACTs frequency, we estimate that point sources could be contaminating the SZE decrement at the <= 20% level for some fraction of clusters.
174 - Felipe Menanteau 2010
We present a catalog of 105 rich and massive ($M>3times10^{14}M_{sun}$) optically-selected clusters of galaxies extracted from 70 square-degrees of public archival griz imaging from the Blanco 4-m telescope acquired over 45 nights between 2005 and 20 07. We use the clusters optically-derived properties to estimate photometric redshifts, optical luminosities, richness, and masses. We complement the optical measurements with archival XMM-Newton and ROSAT X-ray data which provide additional luminosity and mass constraints on a modest fraction of the cluster sample. Two of our clusters show clear evidence for central lensing arcs; one of these has a spectacular large-diameter, nearly-complete Einstein Ring surrounding the brightest cluster galaxy. A strong motivation for this study is to identify the massive clusters that are expected to display prominent signals from the Sunyaev-Zeldovich Effect (SZE) and therefore be detected in the wide-area mm-band surveys being conducted by both the Atacama Cosmology Telescope and the South Pole Telescope. The optical sample presented here will be useful for verifying new SZE cluster candidates from these surveys, for testing the cluster selection function, and for stacking analyzes of the SZE data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا