ﻻ يوجد ملخص باللغة العربية
We constrain the scaling relation between optical richness ($lambda$) and halo mass ($M$) for a sample of SDSS redMaPPer galaxy clusters within the context of the {it Planck} cosmological model. We use a forward modeling approach where we model the probability distribution of optical richness for a given mass, $P(ln lambda| M)$. To model the abundance and the stacked lensing profiles, we use an emulator specifically built to interpolate the halo mass function and the stacked lensing profile for an arbitrary set of halo mass and redshift, which is calibrated based on a suite of high-resolution $N$-body simulations. We apply our method to 8,312 SDSS redMaPPer clusters with $20le lambda le 100$ and $0.10le z_{lambda}le0.33$, and show that the log-normal distribution model for $P(lambda|M)$, with four free parameters, well reproduces the measured abundances and lensing profiles simultaneously. The constraints are characterized by the mean relation, $leftlangle ln{lambda}rightrangle(M)=A+Bln(M/M_{rm pivot})$, with $A=3.207^{+0.044}_{-0.046}$ and $B=0.993^{+0.041}_{-0.055}$ (68%~CL), where the pivot mass scale $M_{rm pivot}=3times 10^{14} h^{-1}M_odot$, and the scatter $sigma_{mathrm{lnlambda}|M}=sigma_0+qln(M/M_{rm pivot})$ with $sigma_0=0.456^{+0.047}_{-0.039}$ and $q=-0.169^{+0.035}_{-0.026}$. We find that a large scatter in halo masses is required at the lowest richness bins ($20le lambda lesssim 30$) in order to reproduce the measurements. Without such a large scatter, the model prediction for the lensing profiles tends to overestimate the measured amplitudes. This might imply a possible contamination of intrinsically low-richness clusters due to the projection effects. Such a low-mass halo contribution is significantly reduced when applying our method to the sample of $30le lambda le 100$.
Constraining the relation between the richness $N$ and the halo mass $M$ over a wide redshift range for optically-selected clusters is a key ingredient for cluster-related science in optical surveys, including the Subaru Hyper Suprime-Cam (HSC) surve
The COnstrain Dark Energy with X-ray clusters (CODEX) sample contains the largest flux limited sample of X-ray clusters at $0.35 < z < 0.65$. It was selected from ROSAT data in the 10,000 square degrees of overlap with BOSS, mapping a total number of
Accurate measurement of galaxy cluster masses is an essential component not only in studies of cluster physics, but also for probes of cosmology. However, different mass measurement techniques frequently yield discrepant results. The SDSS MaxBCG cata
We derive constraints on the matter density Om and the amplitude of matter clustering sig8 from measurements of large scale weak lensing (projected separation R=5-30hmpc) by clusters in the Sloan Digital Sky Survey MaxBCG catalog. The weak lensing si
We present a statistical weak-lensing magnification analysis on an optically selected sample of 3029 texttt{CAMIRA} galaxy clusters with richness $N>15$ at redshift $0.2leq z <1.1$ in the Subaru Hyper Suprime-Cam (HSC) survey. We use two distinct pop