ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliability of the one-crossing approximation in describing the Mott transition

57   0   0.0 ( 0 )
 نشر من قبل Veronica L. Vildosola
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the reliability of the one-crossing approximation (OCA) approach in quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in the conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds, and nanoscale systems. However, several recent studies in the framework of impurity models pointed out to serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behavior is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations for the system away from the particle-hole symmetric case are also presented and discussed.

قيم البحث

اقرأ أيضاً

We apply the density-matrix renormalization group (DMRG) method to a one-dimensional Hubbard model that lacks Umklapp scattering and thus provides an ideal case to study the Mott-Hubbard transition analytically and numerically. The model has a linear dispersion and displays a metal-to-insulator transition when the Hubbard interaction~$U$ equals the band width, $U_{rm c}=W$, where the single-particle gap opens linearly, $Delta(Ugeq W)=U-W$. The simple nature of the elementary excitations permits to determine numerically with high accuracy the critical interaction strength and the gap function in the thermodynamic limit. The jump discontinuity of the momentum distribution $n_k$ at the Fermi wave number $k_{rm F}=0$ cannot be used to locate accurately $U_{rm c}$ from finite-size systems. However, the slope of $n_k$ at the band edges, $k_{rm B}=pm pi$, reveals the formation of a single-particle bound state which can be used to determine $U_{rm c}$ reliably from $n_k$ using accurate finite-size data.
We study the origin of the temperature-induced Mott transition in Ca2RuO4. As a method we use the local-density approximation+dynamical mean-field theory. We show the following. (i) The Mott transition is driven by the change in structure from long t o short c-axis layered perovskite (L-Pbca to S-Pbca); it occurs together with orbital order, which follows, rather than produces, the structural transition. (ii) In the metallic L-Pbca phase the orbital polarization is ~0. (iii) In the insulating S-Pbca phase the lower energy orbital, ~xy, is full. (iv) The spin-flip and pair-hopping Coulomb terms reduce the effective masses in the metallic phase. Our results indicate that a similar scenario applies to Ca_{2-x}Sr_xRuO_4 (x<0.2). In the metallic x< 0.5 structures electrons are progressively transferred to the xz/yz bands with increasing x, however we find no orbital-selective Mott transition down to ~300 K.
Pressure dependence of the conductivity and thermoelectric power is measured through the Mott transition in the layer organic conductor EtMe3P[Pd(dmit)2]2. The critical behavior of the thermoelectric effect provides a clear and objective determinatio n of the Mott-Hubbard transition during the isothermal pressure sweep. Above the critical end point, the metal-insulator crossing, determined by the thermoelectric effect minimum value, is not found to coincide with the maximum of the derivative of the conductivity as a function of pressure. We show that the critical exponents of the Mott-Hubbard transition fall within the Ising universality class regardless of the dimensionality of the system.
The microscopic mechanism of the metal-insulator transition is studied by orbital-resolved 51V NMR spectroscopy in a prototype of the quasi-one-dimensional system V6O13. We uncover that the transition involves a site-selective d orbital order lifting twofold orbital degeneracy in one of the two VO6 chains. The other chain leaves paramagnetic moments on the singly occupied dxy orbital across the transition. The two chains respectively stabilize an orbital-assisted spin-Peierls state and an antiferromagnetic long-range order in the ground state. The site-selective Mott transition may be a source of the anomalous metal and the Mott-Peierls duality.
We analyze the nature of Mott metal-insulator transition in multiorbital systems using dynamical mean-field theory (DMFT). The auxiliary multiorbital quantum impurity problem is solved using continuous time quantum Monte Carlo (CTQMC) and the rotatio nally invariant slave-boson (RISB) mean field approximation. We focus our analysis on the Kanamori Hamiltonian and find that there are two markedly different regimes determined by the nature of the lowest energy excitations of the atomic Hamiltonian. The RISB results at $Tto0$ suggest the following rule of thumb for the order of the transition at zero temperature: a second order transition is to be expected if the lowest lying excitations of the atomic Hamiltonian are charge excitations, while the transition tends to be first order if the lowest lying excitations are in the same charge sector as the atomic ground state. At finite temperatures the transition is first order and its strength, as measured e.g. by the jump in the quasiparticle weight at the transition, is stronger in the parameter regime where the RISB method predicts a first order transition at zero temperature. Interestingly, these results seem to apply to a wide variety of models and parameter regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا