ﻻ يوجد ملخص باللغة العربية
A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.
While Moores law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architecture
This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supp
We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale non
Non-Volatile Memories (NVMs) such as Resistive RAM (RRAM) are used in neuromorphic systems to implement high-density and low-power analog synaptic weights. Unfortunately, an RRAM cell can switch its state after reading its content a certain number of
To infer information flow in any network of agents, it is important first and foremost to establish causal temporal relations between the nodes. Practical and automated methods that can infer causality are difficult to find, and the subject of ongoin