ﻻ يوجد ملخص باللغة العربية
We investigate the decoherence of $^{40}$K impurities interacting with a three-dimensional Fermi sea of $^{6}$Li across an interspecies Feshbach resonance. The decoherence is measured as a function of the interaction strength and temperature using a spin-echo atom interferometry method. For weak to moderate interaction strengths, we interpret our measurements in terms of scattering of K quasiparticles by the Fermi sea and find very good agreement with a Fermi liquid calculation. For strong interactions, we observe significant enhancement of the decoherence rate, which is largely independent of temperature, pointing to behavior that is beyond the Fermi liquid picture.
We unravel the ground state properties and the non-equilibrium quantum dynamics of two bosonic impurities immersed in an one-dimensional fermionic environment by applying a quench of the impurity-medium interaction strength. In the ground state, the
The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impur
We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the entropy of one target gas in presence of a sec
We present a variational calculation of the energy of an impurity immersed a double Fermi sea of non-interacting Fermions. We show that in the strong-coupling regime, the system undergoes a first order transition between polaronic and trimer states.
In systems of ultracold atoms, pairwise interactions are resonantly enhanced by the application of an oscillating magnetic field that is parallel to the spin-quantization axis of the atoms. The resonance occurs when the frequency of the applied field