ﻻ يوجد ملخص باللغة العربية
The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.
We investigate the decoherence of $^{40}$K impurities interacting with a three-dimensional Fermi sea of $^{6}$Li across an interspecies Feshbach resonance. The decoherence is measured as a function of the interaction strength and temperature using a
Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting with a quantum reservoir. Here, we expa
Phase transitions and their associated crossovers are imprinted in the behavior of fluctuations. Motivated by recent experiments on ultracold atoms in optical lattices, we compute the thermodynamic density fluctuations $delta N^2$ of the two-dimensio
In the last decade, quantum simulators, and in particular cold atoms in optical lattices, have emerged as a valuable tool to study strongly correlated quantum matter. These experiments are now reaching regimes that are numerically difficult or imposs
We study the Bose-polaron problem in a nonequilibrium setting, by considering an impurity embedded in a quantum fluid of light realized by exciton-polaritons in a microcavity, subject to a coherent drive and dissipation on account of pump and cavity