ﻻ يوجد ملخص باللغة العربية
Chiral anomaly, a non-conservation of chiral charge pumped by the topological nontrivial gauge fields, has been predicted to exist in Weyl semimetals. However, until now, the experimental signature of this effect exclusively relies on the observation of negative longitudinal magnetoresistance at low temperatures. Here, we report the field-modulated chiral charge pumping process and valley diffusion in Cd3As2. Apart from the conventional negative magnetoresistance, we observe an unusual nonlocal response with negative field dependence up to room temperature, originating from the diffusion of valley polarization. Furthermore, a large magneto-optic Kerr effect generated by parallel electric and magnetic fields is detected. These new experimental approaches provide a quantitative analysis of the chiral anomaly phenomenon which is inaccessible previously. The ability to manipulate the valley polarization in topological semimetal at room temperature opens up a brand-new route towards understanding its fundamental properties and utilizing the chiral fermions.
The linear band crossings of 3D Dirac and Weyl semimetals are characterized by a charge chirality, the parallel or anti-parallel locking of electron spin to its momentum. Such materials are believed to exhibit a ${bf E} cdot {bf B}$ chiral magnetic e
Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a small gap, so that graphene is formally a quantum spin hall insulator. Here we present symmetry-protected 2D Dirac semimetals, which feature Dirac con
We study a class of Dirac semimetals that feature an eightfold-degenerate double Dirac point. We show that 7 of the 230 space groups can host such Dirac points and argue that they all generically display linear dispersion. We introduce an explicit ti
In this paper, the chiral Hall effect of strained Weyl semimetals without any external magnetic field is proposed. Electron-phonon coupling emerges in the low-energy fermionic sector through a pseudogauge potential. We show that, by using chiral kine
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the