ﻻ يوجد ملخص باللغة العربية
In this paper, the chiral Hall effect of strained Weyl semimetals without any external magnetic field is proposed. Electron-phonon coupling emerges in the low-energy fermionic sector through a pseudogauge potential. We show that, by using chiral kinetic theory, the chiral Hall effect appears as a response to a real time-varying electric field in the presence of structural distortion and it causes spatial chirality and charges separation in a Weyl system. We also show that the coupling of the electrons to acoustic phonons as a gapless excitation leads to emerging an optical absorption peak at $omega=omega_{el}$, where $omega_{el}$ is defined as a characteristic frequency associated with the pseudomagnetic field. We also propose the strain-induced planar Hall effect as another transport signature of the chiral-anomaly equation.
Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that soft ferromagnetic (FM) material EuB6 can achieve mu
After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly
Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion.These materials are now commonly dubbed Weyl semi-metals (WSM).One predicted property of Weyl fermions is th
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different ene