ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear chaos for the Quick-Thinking-Driver model

86   0   0.0 ( 0 )
 نشر من قبل Juan Seoane-Sepulveda
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, the topic of car-following has experimented an increased importance in traffic engineering and safety research. This has become a very interesting topic because of the development of driverless cars cite{google_driverless_cars}. Driving models which describe the interaction between adjacent vehicles in the same lane have a big interest in simulation modeling, such as the Quick-Thinking-Driver model. A non-linear version of it can be given using the logistic map, and then chaos appears. We show that an infinite-dimensional version of the linear model presents a chaotic behavior using the same approach as for studying chaos of death models of cell growth.

قيم البحث

اقرأ أيضاً

Chaotic dynamics can be quite heterogeneous in the sense that in some regions the dynamics are unstable in more directions than in other regions. When trajectories wander between these regions, the dynamics is complicated. We say a chaotic invariant set is heterogeneous when arbitrarily close to each point of the set there are different periodic points with different numbers of unstable dimensions. We call such dynamics heterogeneous chaos (or hetero-chaos), While we believe it is common for physical systems to be hetero-chaotic, few explicit examples have been proved to be hetero-chaotic. Here we present two more explicit dynamical systems that are particularly simple and tractable with computer. It will give more intuition as to how complex even simple systems can be. Our maps have one dense set of periodic points whose orbits are 1D unstable and another dense set of periodic points whose orbits are 2D unstable. Moreover, they are ergodic relative to the Lebesgue measure.
77 - David J.W. Simpson 2020
We show how the existence of three objects, $Omega_{rm trap}$, ${bf W}$, and $C$, for a continuous piecewise-linear map $f$ on $mathbb{R}^N$, implies that $f$ has a topological attractor with a positive Lyapunov exponent. First, $Omega_{rm trap} subs et mathbb{R}^N$ is trapping region for $f$. Second, ${bf W}$ is a finite set of words that encodes the forward orbits of all points in $Omega_{rm trap}$. Finally, $C subset T mathbb{R}^N$ is an invariant expanding cone for derivatives of compositions of $f$ formed by the words in ${bf W}$. We develop an algorithm that identifies these objects for two-dimensional homeomorphisms comprised of two affine pieces. The main effort is in the explicit construction of $Omega_{rm trap}$ and $C$. Their existence is equated to a set of computable conditions in a general way. This results in a computer-assisted proof of chaos throughout a relatively large regime of parameter space. We also observe how the failure of $C$ to be expanding can coincide with a bifurcation of $f$. Lyapunov exponents are evaluated using one-sided directional derivatives so that forward orbits that intersect a switching manifold (where $f$ is not differentiable) can be included in the analysis.
We show that the Gurarij space $mathbb{G}$ has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex $mathbb{P}$ and we prov e that it consists of the canonical action on $mathbb{P}$ itself. This answers a question of Conley and T{o}rnquist. We show that the pointwise stabilizer of any closed proper face of $mathbb{P}$ is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by establishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and thei
224 - Ashish Tiwari 2021
A central question in verification is characterizing when a system has invariants of a certain form, and then synthesizing them. We say a system has a $k$ linear invariant, $k$-LI in short, if it has a conjunction of $k$ linear (non-strict) inequalit ies -- equivalently, an intersection of $k$ (closed) half spaces -- as an invariant. We present a sufficient condition -- solely in terms of eigenvalues of the $A$-matrix -- for an $n$-dimensional linear dynamical system to have a $k$-LI. Our proof of sufficiency is constructive, and we get a procedure that computes a $k$-LI if the condition holds. We also present a necessary condition, together with many example linear systems where either the sufficient condition, or the necessary is tight, and which show that the gap between the conditions is not easy to overcome. In practice, the gap implies that using our procedure, we synthesize $k$-LI for a larger value of $k$ than what might be necessary. Our result enables analysis of continuous and hybrid systems with linear dynamics in their modes solely using reasoning in the theory of linear arithmetic (polygons), without needing reasoning over nonlinear arithmetic (ellipsoids).
In the 1988 textbook Fractals Everywhere M. Barnsley introduced an algorithm for generating fractals through a random procedure which he called the chaos game. Using ideas from the classical theory of covering times of Markov chains we prove an asymp totic formula for the expected time taken by this procedure to generate a $delta$-dense subset of a given self-similar fractal satisfying the open set condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا