ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Tolerance of 65nm CMOS Transistors

106   0   0.0 ( 0 )
 نشر من قبل David Christian
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the effects of ionizing radiation on 65nm CMOS transistors held at approximately -20C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.



قيم البحث

اقرأ أيضاً

CMOS Monolithic Active Pixel Sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the the dead time free, so-called self bias pixel. Moreover, we discuss radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad
Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operat ion. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing dose. Mitigation strategies for single event effects (SEE) are discussed for their use in the large hadron collider environment.
95 - D.-L. Pohl 2017
Pixel sensors using 8 CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 $times$ 10$^{15}$ n$_{rm eq}$ cm$^{-2}$. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.
103 - M. Dyndal , V. Dao , P. Allport 2019
Depleted Monolithic Active Pixel Sensor (DMAPS) prototypes developed in the TowerJazz 180 nm CMOS imaging process have been designed in the context of the ATLAS upgrade Phase-II at the HL-LHC. The pixel sensors are characterized by a small collection electrode (3 $mu$m) to minimize capacitance, a small pixel size ($36.4times 36.4$ $mu$m), and are produced on high resistivity epitaxial p-type silicon. The design targets a radiation hardness of $1times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$, compatible with the outermost layer of the ATLAS ITK Pixel detector. This paper presents the results from characterization in particle beam tests of the Mini-MALTA prototype that implements a mask change or an additional implant to address the inefficiencies on the pixel edges. Results show full efficiency after a dose of $1times10^{15}$ 1 MeV n$_{eq}$/cm$^{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا