ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation of a neutrino laboratory for search for sterile neutrino at SM-3 reactor

199   0   0.0 ( 0 )
 نشر من قبل Anatoly Serebrov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.



قيم البحث

اقرأ أيضاً

192 - Gang Guo , Fang Han , Xiangdong Ji 2013
We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $bar { u}_e$ survival probability with a baseline of less than 15 m. Both hydrogen and deuteron have been considered as potential targets. The s ensitivity to sterile-to-regular neutrino mixing is investigated under the 3(active)+1(sterile) framework. We find that the mixing parameter $sin^2(2theta_{14})$ can be severely constrained by such measurement if the mass square difference $Delta m_{14}^2$ is of the order of $sim$1 eV$^2$.
There has been designed an experimental project Neutrino-4 for 100 MW reactor SM-3 to test the hypothesis of the reactor antineutrino anomaly. Advantages of the reactor SM-3 for such an experiment are low background conditions as well as small dimens ions of a reactor core - 35x42x42 cm3. One has carried on the Monte-Carlo modeling of a position sensitive antineutrino detector consisting of 5 operation sections, which as a result of displacement, covers the distance from 6 to 13 meters from the reactor core. One has succeeded in obtaining an experimental area of sensitivity to oscillation parameters, which enables to verify the hypothesis of reactor antineutrino oscillations into a sterile state.
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. A moveable detector, protected with pa ssive shielding from outer radiation, can be set at distance range 6 to 12 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The main difficulties of the measurements caused by cosmic background and it heavily decreases the precision of measurements. We present the analysis of measurements at small distances together with the data obtained in measurements at long distances in order to obtain parameters of sterile neutrino.
283 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Anti neutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
The compact material irradiation facility (CMIF) is a current project in China that will provide a compact deuteron-beryllium neutron source. The target of this facility will be an intense and compact Isotope Decay-At-Rest (IsoDAR) neutrino source. I n this paper, we propose to test the sterile neutrino hypothesis using CMIF as the neutrino source. At CMIF platform, the electron antineutrino production rate can be up to $2.0times 10^{19}$ per day. When paired with an 80 t liquid scintillator detector to study short baseline electron antineutrino disappearance, the inverse beta decay (IBD) event rate is large enough to investigate the parameter ranges of interest for neutrino anomalies. Our sensitivity analysis shows that a short baseline experiment at this platform will provide a very competitive sterile neutrino search, especially in the high-$Delta m^2$ region ($Delta m^2 >10,text{eV}^2$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا