ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino-4 experiment: preparations for search for sterile neutrino at 100 MW reactor SM-3 at 6-13 meters

135   0   0.0 ( 0 )
 نشر من قبل Anatoly Serebrov
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been designed an experimental project Neutrino-4 for 100 MW reactor SM-3 to test the hypothesis of the reactor antineutrino anomaly. Advantages of the reactor SM-3 for such an experiment are low background conditions as well as small dimensions of a reactor core - 35x42x42 cm3. One has carried on the Monte-Carlo modeling of a position sensitive antineutrino detector consisting of 5 operation sections, which as a result of displacement, covers the distance from 6 to 13 meters from the reactor core. One has succeeded in obtaining an experimental area of sensitivity to oscillation parameters, which enables to verify the hypothesis of reactor antineutrino oscillations into a sterile state.

قيم البحث

اقرأ أيضاً

In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.
In order to carry out research in the field of possible existence of a sterile neutrino the laboratory based on SM-3 reactor (Dimitrovgrad, Russia) was created to search for oscillations of reactor antineutrino. A moveable detector, protected with pa ssive shielding from outer radiation, can be set at distance range 6 to 12 meters from the reactor core. Measurements of antineutrino flux at such short distances from the reactor core are carried out with moveable detector for the first time. The main difficulties of the measurements caused by cosmic background and it heavily decreases the precision of measurements. We present the analysis of measurements at small distances together with the data obtained in measurements at long distances in order to obtain parameters of sterile neutrino.
229 - Y.J. Ko , B.R. Kim , J.Y. Kim 2016
An experiment to search for light sterile neutrinos was conducted at a reactor with a thermal power of 2.8 GW located at the Hanbit nuclear power complex. The search was done with a detector consisting of a ton of Gd-loaded liquid scintillator in a t endon gallery approximately 24 m from the reactor core. The measured antineutrino event rate is 1976 per day with a signal to background ratio of about 22. The shape of the antineutrino energy spectrum obtained from eight-month data-taking period is compared with a hypothesis of oscillations due to active-sterile antineutrino mixing. It is found to be consistent with no oscillation. An excess around 5 MeV prompt energy range is observed as seen in existing longer baseline experiments. The parameter space of $sin^{2}2theta_{14}$ down below 0.1 for $Delta m^{2}_{41}$ ranging from 0.2 eV$^{2}$ to 2.3 eV$^{2}$ and the optimum point for the previously reported reactor antineutrino anomaly are excluded with a confidence level higher than 90%.
The experiment Neutrino-4 had started in 2014 with a detector model and then was continued with a full-scale detector in 2016 - 2021. In this article we describe all steps of preparatory work on this experiment. We present all results of the Neutrino -4 experiment with increased statistical accuracy provided to date. The experimental setup is constructed to measure the flux and spectrum of the reactor antineutrinos as a function of distance to the center of the active zone of the SM-3 reactor (Dimitrovgrad, Russia) in the range of 6 - 12 meters. Using all the collected data, we performed a model-independent analysis to determine the oscillation parameters $Delta m_{14}^2$ and $sin^22theta_{14}$. The method of coherent summation of measurement results allows to directly demonstrate the oscillation effect. We present the analysis of possible systematic errors and the MC model of the experiment, which considers the possibility of the effect manifestation at the present precision level. As a result of the analysis, we can conclude that at currently available statistical accuracy we observe the oscillations at the $2.9sigma$ level with parameters $Delta m_{14}^2=(7.3pm0.13_{st}pm1.16_{sys})text{eV}^2 = (7.3pm1.17)text{eV}^2$ and $sin^22theta_{14}= 0.36pm0.12_{stat}(2.9sigma)$. Monte Carlo based statistical analysis gave estimation of confidence level at $2.7sigma$. We plan to improve the currently working experimental setup and create a completely new setup in order to increase the accuracy of the experiment by 3 times. We also provide a brief analysis of the general experimental situation in the search for sterile neutrinos.
105 - S. P. Behera , D. K. Mishra , 2019
The reactor antineutrinos are used for the precise measurement of oscillation parameters in the 3-neutrino model, and also used to investigate active-sterile neutrino mixing sensitivity in the 3$+$1 neutrino framework. In the present work, we study t he feasibility of sterile neutrino search with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental set-up using electron antineutrinos ($overline{ u}_e$) produced from reactor as a source. The so-called 3$+$1 scenario is considered for active-sterile neutrino mixing, which leads to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed considering both the reactor and detector related parameters. It is found that, the ISMRAN set-up can observe the active-sterile neutrino mixing sensitivity for $sin^{2}2theta_{14} geq$ 0.064 and $Delta m^{2}_{41}$ = 1.0 eV$^2$ at 90$%$ confidence level for an exposure of 1 ton-year by using neutrinos produced from the DHRUVA reactor with thermal power of 100 MW$_{th}$. It is also observed that, there is a significant improvement of the active-sterile neutrino mixing parameter $sin^{2}2theta_{14}$ to $sim$ 0.03 at the same $Delta m^{2}_{41}$ by putting the ISMRAN detector set-up at a distance of 20 m from the compact proto-type fast breeder reactor (PFBR) facility with thermal power of 1250 MW$_{th}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا