ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear structure studies of $^{24}$F

408   0   0.0 ( 0 )
 نشر من قبل Michel Lion
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف L. Caceres




اسأل ChatGPT حول البحث

The structure of the $^{24}$F nucleus has been studied at GANIL using the $beta$ decay of $^{24}$O and the in-beam $gamma$-ray spectroscopy from the fragmentation of projectile nuclei. Combining these complementary experimental techniques, the level scheme of $^{24}$F has been constructed up to 3.6 Mev by means of particle-$gamma$ and particle-$gammagamma$ coincidence relations. Experimental results are compared to shell-model calculations using the standard USDA and USDB interactions as well as ab-initio valence-space Hamiltonians calculated from the in-medium similarity renormalization group based on chiral two- and three-nucleon forces. Both methods reproduce the measured level spacings well, and this close agreement allows unidentified spins and parities to be consistently assigned.



قيم البحث

اقرأ أيضاً

190 - O. Sorlin 2017
It is proposed here to investigate three major properties of the nuclear force that influence the amplitude of shell gaps, the nuclear binding energies as well as the nuclear $beta$-decay properties far from stability, that are all key ingredients fo r modeling the r-process nucleosynthesis. These properties are derived from experiments performed in different facilities worldwide, using several various state-of-the-art experimental techniques including transfer and knockout reactions. Expected consequences on the r process nucleosynthesis as well as on the stability of super heavy elements are discussed.
Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.
The neutron-shell structure of $^{25}$F was studied using quasi-free (p,2p) knockout reaction at 270A MeV in inverse kinematics. The sum of spectroscopic factors of $pi$0d$_{5/2}$ orbital is found to be $1.0 pm 0.3$. However, the spectroscopic factor for the ground-state to ground-state transition ($^{25}$F, $^{24}$O$_{g.s.}$) is only $0.36pm 0.13$, and $^{24}$O excited states are produced from the 0d$_{5/2}$ proton knockout. The result shows that the $^{24}$O core of $^{25}$F nucleus significantly differs from a free $^{24}$O nucleus, and the core consists of 35% $^{24}$O$_{g.s}$. and 65% excited $^{24}$O.
104 - Peter Senger 2020
Laboratory experiments with high-energetic heavy-ion collisions offer the opportunity to explore fundamental properties of nuclear matter, such as the high-density equation-of-state, which governs the structure and dynamics of cosmic objects and phen omena like neutron stars, supernova explosions, and neutron star mergers. A particular goal and challenge of the experiments is to unravel the microscopic degrees-of-freedom of strongly interaction matter at high density, including the search for phase transitions, which may feature a region of phase coexistence and a critical endpoint. As the theory of strong interaction is not able to make firm predictions for the structure and the properties of matter high baryon chemical potentials, the scientific progress in this field is driven by experimental results. The mission of future experiments at FAIR and NICA, which will complement the running experimental programs at GSI, CERN, and RHIC, is to explore new diagnostic probes, which never have been measured before at collision energies, where the highest net-baryon densities will be created. The most promising observables, which are expected to shed light on the nature of high-density QCD matter, comprise the collective flow of identified particles including multi-strange (anti-) hyperons, fluctuations and correlations, lepton pairs, and charmed particles. In the following, the perspectives for experiments in the NICA energy range will be discussed.
Geo-neutrino studies are based on theoretical estimates of geo-neutrino spectra. We propose a method for a direct measurement of the energy distribution of antineutrinos from decays of long-lived radioactive isotopes. We present preliminary results f or the geo-neutrinos from Bi-214 decay, a process which accounts for about one half of the total geo-neutrino signal. The feeding probability of the lowest state of Bi-214 - the most important for geo-neutrino signal - is found to be p_0 = 0.177 pm 0.004 (stat) ^{+0.003}_{-0.001} (sys), under the hypothesis of Universal Neutrino Spectrum Shape (UNSS). This value is consistent with the (indirect) estimate of the Table of Isotopes (ToI). We show that achievable larger statistics and reduction of systematics should allow to test possible distortions of the neutrino spectrum from that predicted using the UNSS hypothesis. Implications on the geo-neutrino signal are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا