ﻻ يوجد ملخص باللغة العربية
The neutron-shell structure of $^{25}$F was studied using quasi-free (p,2p) knockout reaction at 270A MeV in inverse kinematics. The sum of spectroscopic factors of $pi$0d$_{5/2}$ orbital is found to be $1.0 pm 0.3$. However, the spectroscopic factor for the ground-state to ground-state transition ($^{25}$F, $^{24}$O$_{g.s.}$) is only $0.36pm 0.13$, and $^{24}$O excited states are produced from the 0d$_{5/2}$ proton knockout. The result shows that the $^{24}$O core of $^{25}$F nucleus significantly differs from a free $^{24}$O nucleus, and the core consists of 35% $^{24}$O$_{g.s}$. and 65% excited $^{24}$O.
The structure of the $^{24}$F nucleus has been studied at GANIL using the $beta$ decay of $^{24}$O and the in-beam $gamma$-ray spectroscopy from the fragmentation of projectile nuclei. Combining these complementary experimental techniques, the level
The parity-transfer $({}^{16}{rm O},{}^{16}{rm F}(0^-,{rm g.s.}))$ reaction is presented as a new probe for investigating isovector $0^-$ states in nuclei. The properties of $0^-$ states provide a stringent test of the threshold density for pion cond
In a recent experiment, carried out at RIBF/RIKEN, the $^{25}$F$(p,2p)$$^{24}$O reaction was studied at 270 MeV/A in inverse kinematics. Derived spectroscopic factors suggest that the effective core of $^{25}$F significantly differs from a free $^{24
The first $gamma$-ray spectroscopy of $^{52}$Ar, with the neutron number N = 34, was measured using the $^{53}$K(p,2p) one-proton removal reaction at $sim$210 MeV/u at the RIBF facility. The 2$^{+}_{1}$ excitation energy is found at 1656(18) keV, the
We report the measurement of reaction cross sections ($sigma_R^{rm ex}$) of $^{27,29}$F with a carbon target at RIKEN. The unexpectedly large $sigma_R^{rm ex}$ and derived matter radius identify $^{29}$F as the heaviest two-neutron Borromean halo to