ﻻ يوجد ملخص باللغة العربية
The first author proved in a previous paper that the n-fold bar construction for commutative algebras can be generalized to E_n-algebras, and that one can calculate E_n-homology with trivial coefficients via this iterated bar construction. We extend this result to E_n-homology and E_n-cohomology of a commutative algebra A with coefficients in a symmetric A-bimodule.
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
Persistent homology is a topological feature used in a variety of applications such as generating features for data analysis and penalizing optimization problems. We develop an approach to accelerate persistent homology computations performed on many
Hepworth, Willerton, Leinster and Shulman introduced the magnitude homology groups for enriched categories, in particular, for metric spaces. The purpose of this paper is to describe the magnitude homology group of a metric space in terms of order co
In many scientific and technological contexts we have only a poor understanding of the structure and details of appropriate mathematical models. We often, therefore, need to compare different models. With available data we can use formal statistical
We use factorization homology and higher Hochschild (co)chains to study various problems in algebraic topology and homotopical algebra, notably brane topology, centralizers of $E_n$-algebras maps and iterated bar constructions. In particular, we obta