ﻻ يوجد ملخص باللغة العربية
Building on work of Livernet and Richter, we prove that E_n-homology and E_n-cohomology of a commutative algebra with coefficients in a symmetric bimodule can be interpreted as functor homology and cohomology. Furthermore we show that the associated Yoneda algebra is trivial.
The initial motivation of this work was to give a topological interpretation of two-periodic twisted de-Rham cohomology which is generalizable to arbitrary coefficients. To this end we develop a sheaf theory in the context of locally compact topologi
We construct a natural transformation from the Bousfield-Kuhn functor evaluated on a space to the Topological Andre-Quillen cohomology of the K(n)-local Spanier-Whitehead dual of the space, and show that the map is an equivalence in the case where th
We use factorization homology and higher Hochschild (co)chains to study various problems in algebraic topology and homotopical algebra, notably brane topology, centralizers of $E_n$-algebras maps and iterated bar constructions. In particular, we obta
We show that the hypercohomology of the Chevalley-Eilenberg-de Rham complex of a Lie algebroid L over a scheme with coefficients in an L-module can be expressed as a derived functor. We use this fact to study a Hochschild-Serre type spectral sequence attached to an extension of Lie algebroids.
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of