ﻻ يوجد ملخص باللغة العربية
Heisenberg-type higher order symmetries are studied for both classical and quantum mechanical systems separable in cartesian coordinates. A few particular cases of this type of superintegrable systems were already considered in the literature, but here they are characterized in full generality together with their integrability properties. Some of these systems are defined only in a region of $mathbb R^n$, and in general they do not include bounded solutions. The quantum symmetries and potentials are shown to reduce to their superintegrable classical analogs in the $hbar to0$ limit.
Several examples of classical superintegrable systems in two-dimensional spac are shown to possess hidden symmetries leading to their linearization. They are those determined 50 years ago in [Phys. Lett. 13, 354 (1965)], and the more recent Tremblay-
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el
In a recent paper we have considered the long time asymptotics of the periodic Toda lattice under a short range perturbation and we have proved that the perturbed lattice asymptotically approaches a modulated lattice. In the present paper we capture
Within a simple SO(8) algebraic model, the coexistence between isoscalar and isovector pairing modes can be successfully described using a mean-field method plus restoration of broken symmetries. In order to port this methodology to real nuclei, we n
We introduce a mechanism for generating higher order rogue waves (HRWs) of the nonlinear Schrodinger(NLS) equation: the progressive fusion and fission of $n$ degenerate breathers associated with a critical eigenvalue $lambda_0$, creates an order $n$