ﻻ يوجد ملخص باللغة العربية
We introduce a mechanism for generating higher order rogue waves (HRWs) of the nonlinear Schrodinger(NLS) equation: the progressive fusion and fission of $n$ degenerate breathers associated with a critical eigenvalue $lambda_0$, creates an order $n$ HRW. By adjusting the relative phase of the breathers at the interacting area, it is possible to obtain different types of HRWs. The value $lambda_0$ is a zero point of the eigenfunction of the Lax pair of the NLS equation and it corresponds to the limit of the period of the breather tending to infinity. By employing this mechanism we prove two conjectures regarding the total number of peaks, as well as a decomposition rule in the circular pattern of an order $n$ HRW.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el
In a recent paper we have considered the long time asymptotics of the periodic Toda lattice under a short range perturbation and we have proved that the perturbed lattice asymptotically approaches a modulated lattice. In the present paper we capture
Heisenberg-type higher order symmetries are studied for both classical and quantum mechanical systems separable in cartesian coordinates. A few particular cases of this type of superintegrable systems were already considered in the literature, but he
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara
General high-order rogue wave solutions for the (1+1)-dimensional Yajima-Oikawa (YO) system are derived by using Hirotas bilinear method and the KP-hierarchy reduction technique. These rogue wave solutions are presented in terms of determinants in wh