ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of Long Gamma Ray Burst Progenitors in Cosmological Simulations

185   0   0.0 ( 0 )
 نشر من قبل Lucas Bignone
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the nature of long gamma ray burst (LGRB) progenitors using cosmological simulations of structure formation and galactic evolution. LGRBs are potentially excellent tracers of stellar evolution in the early universe. We developed a Monte Carlo numerical code which generates LGRBs coupled to cosmological simulations. The simulations allows us to follow the ormation of galaxies self-consistently. We model the detectability of LGRBs and their host galaxies in order to compare results with observational data obtained by high-energy satellites. Our code also includes stochastic effects in the observed rate of LGRBs.

قيم البحث

اقرأ أيضاً

We use galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation to study the properties of Long Gamma-Ray Burst (LGRB) host galaxies. We assume that LGRBs originate from the death of massive young stars and analyse how results are affected by different metallicity constraints on the progenitor stars. As expected, the host sample with no metallicity restriction on the progenitor stars provides a perfect tracer of the cosmic star formation history. When LGRBs are required to be generated by low-metallicity stars, they trace a decreasing fraction of the cosmic star formation rate at lower redshift, as a consequence of the global increase in metallicity. We study the properties of host galaxies up to high redshift (~9), finding that they typically have low-metallicity (Z<0.5 Z_sun) and that they are small (M<10^9 M_sun), bluer and younger than the average galaxy population, in agreement with observational data. They are also less clustered than typical L_* galaxies in the Universe, and their descendents are massive, red and reside in groups of galaxies with halo mass between 10^{13} M_sun to 10^{14} M_sun.
103 - C. Firmani 2006
Recently, a tight correlation among three quantities that characterize the prompt emission of long Gamma-Ray Bursts (GRBs) with known redshift z, was discovered (Firmani et al. 2006). We use this correlation to construct the Hubble diagram (HD) with a sample of 19 GRBs in the broad range of z=0.17-4.5, and carry out a full statistical analysis to constrain cosmological parameters (CPs). To optimally solve the problem of circularity, a Bayesian approach is applied. The main result is that the concordance LambdaCDM cosmology is fully consistent with the GRB data at the level of several tests. If we assume the Lambda cosmology, then we find Om_M=0.31^{+0.09}_{-0.08} and Om_Lambda=0.80^{+0.20}_{-0.30}$ (1sigma); the flat-geometry case is within 1sigma. Assuming flatness, we find Om_M=0.29^{+0.08}_{-0.06}, and fixing Om_M=0.28, we obtain a dark energy equation of state parameter w=-1.07^{+0.25}_{-0.38}, i.e. the ambdaCDM model (w=-1) is within 1sigma. Given the low number of usable GRBs we cannot yet constrain well the possible evolution of w=w(z). However, the case w(z)=-1 (LambdaCDM) is consistent at the 68.3% CL with GRBs. It is shown also how a broad range of zs in the used sample improves the determination of CPs from the HD, which is the case of GRBs as distance indicators.
Since the launch of Swift satellite, the detections of high-z (z>4) long gamma-ray bursts (LGRBs) have been rapidly growing, even approaching the very early Universe (the record holder currently is z=8.3). The observed high-z LGRB rate shows signific ant excess over that estimated from the star formation history. We investigate what may be responsible for this high productivity of GRBs at high-z through Monte Carlo simulations, with effective Swif/BAT trigger and redshift detection probabilities based on current Swift/BAT sample and CGRO/BATSE LGRB sample. We compare our simulations to the Swift observations via log N-log P, peak luminosity (L) and redshift distributions. In the case that LGRB rate is purely proportional to the star formation rate (SFR), our simulations poorly reproduce the LGRB rate at z>4, although the simulated log N-log P distribution is in good agreement with the observed one. Assuming that the excess of high-z GRB rate is due to the cosmic metallicity evolution or unknown LGRB rate increase parameterized as (1+z)^delta, we find that although the two scenarios alone can improve the consistency between our simulations and observations, incorporation of them gives much better consistency. We get 0.2<epsilon<0.6 and delta<0.6, where epsilon is the metallicity threshold for the production of LGRBs. The best consistency is obtained with a parameter set (epsilon, delta)=(~0.4, ~0.4), and BAT might trigger a few LGRBs at z~14. With increasing detections of GRBs at z>4 (~15% of GRBs in current Swift LGRB sample based on our simulations), a window for very early Universe is opening by Swift and up-coming SVOM missions.
88 - J. Elliott 2012
To answer questions on the start and duration of the epoch of reionisation, periods of galaxy mergers and properties of other cosmological encounters, the cosmic star formation history (CSFH), is of fundamental importance. Using the association of lo ng gamma-ray bursts (LGRBs) with the death of massive stars and their ultra-luminous nature, the CSFH can be probed to higher redshifts than current conventional methods. Unfortunately, no consensus has been reached on the manner in which the LGRB rate (LGRBR) traces the CSFH, leaving many of the questions mentioned mostly unexplored by this method. Observations by the GRB NIR detector (GROND) over the past 4 years have, for the first time, acquired highly complete LGRB samples. Driven by these completeness levels and new evidence of LGRBs also occurring in more massive and metal rich galaxies than previously thought, the possible biases of the LGRBR-CSFH connection are investigated over a large range of galaxy properties. The CSFH is modelled using empirical fits to the galaxy mass function and galaxy star formation rates. Biasing the CSFH by metallicity cuts, mass range boundaries, and other unknown redshift dependencies, a LGRBR is generated and compared to the highly complete GROND sample. It is found that there is no strong preference for a metallicity cut or fixed galaxy mass boundaries and that there are no unknown redshift effects, in contrast to previous work which suggest values of Z/Z_sun~0.1-0.3. From the best-fit models, we predict that ~1.2% of the LGRB burst sample exists above z=6. The linear relationship between the LGRBR and the CSFH suggested by our results implies that redshift biases present in previous LGRB samples significantly affect the inferred dependencies of LGRBs on their host galaxy properties. Such biases can lead to, e.g., an interpretation of metallicity limitations and evolving LGRB luminosity functions.
We present the Hubble diagram (HD) of 66 Gamma Ray Bursts (GRBs) derived using only data from their X - ray afterglow lightcurve. To this end, we use the recently updated L_X - T_a correlation between the break time T_a and the X - ray luminosity L_X measured at T_a calibrated from a sample of Swift GRBs with lightcurves well fitted by the Willingale et al. (2007) model. We then investigate the use of this HD to constrain cosmological parameters when used alone or in combination with other data showing that the use of GRBs leads to constraints in agreement with previous results in literature. We finally argue that a larger sample of high luminosity GRBs can provide a valuable information in the search for the correct cosmological model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا