ترغب بنشر مسار تعليمي؟ اضغط هنا

Long Gamma-Ray Burst prompt emission properties as a cosmological tool

104   0   0.0 ( 0 )
 نشر من قبل Vladimir Avila-Reese
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Firmani




اسأل ChatGPT حول البحث

Recently, a tight correlation among three quantities that characterize the prompt emission of long Gamma-Ray Bursts (GRBs) with known redshift z, was discovered (Firmani et al. 2006). We use this correlation to construct the Hubble diagram (HD) with a sample of 19 GRBs in the broad range of z=0.17-4.5, and carry out a full statistical analysis to constrain cosmological parameters (CPs). To optimally solve the problem of circularity, a Bayesian approach is applied. The main result is that the concordance LambdaCDM cosmology is fully consistent with the GRB data at the level of several tests. If we assume the Lambda cosmology, then we find Om_M=0.31^{+0.09}_{-0.08} and Om_Lambda=0.80^{+0.20}_{-0.30}$ (1sigma); the flat-geometry case is within 1sigma. Assuming flatness, we find Om_M=0.29^{+0.08}_{-0.06}, and fixing Om_M=0.28, we obtain a dark energy equation of state parameter w=-1.07^{+0.25}_{-0.38}, i.e. the ambdaCDM model (w=-1) is within 1sigma. Given the low number of usable GRBs we cannot yet constrain well the possible evolution of w=w(z). However, the case w(z)=-1 (LambdaCDM) is consistent at the 68.3% CL with GRBs. It is shown also how a broad range of zs in the used sample improves the determination of CPs from the HD, which is the case of GRBs as distance indicators.



قيم البحث

اقرأ أيضاً

We study the nature of long gamma ray burst (LGRB) progenitors using cosmological simulations of structure formation and galactic evolution. LGRBs are potentially excellent tracers of stellar evolution in the early universe. We developed a Monte Carl o numerical code which generates LGRBs coupled to cosmological simulations. The simulations allows us to follow the ormation of galaxies self-consistently. We model the detectability of LGRBs and their host galaxies in order to compare results with observational data obtained by high-energy satellites. Our code also includes stochastic effects in the observed rate of LGRBs.
65 - Ryo Yamazaki 2005
Tail emission of the prompt gamma-ray burst (GRB) is discussed using a multiple emitting sub-shell (inhomogeneous jet, sub-jets or mini-jets) model, where the whole GRB jet consists of many emitting sub-shells. One may expect that such a jet with ang ular inhomogeneity should produce spiky tail emission. However, we found that the tail is not spiky but is decaying roughly monotonically. The global decay slope of the tail is not so much affected by the local angular inhomogeneity but affected by the global sub-shell energy distribution. The fact that steepening breaks appeared in some events prefers the structured jets. If the angular size of the emitting sub-shell is around 0.01-0.02 rad, some bumps or fluctuations appear in the tail emission observed frequently in long GRBs. If the parameter differences of sub-shell properties are large, the tail has frequent changes of the temporal slope observed in a few bursts. Therefore, the multiple emitting sub-shell model has the advantage of explaining the small-scale structure in the observed rapid decay phase.
We use galaxy catalogues constructed by combining high-resolution N-body simulations with semi-analytic models of galaxy formation to study the properties of Long Gamma-Ray Burst (LGRB) host galaxies. We assume that LGRBs originate from the death of massive young stars and analyse how results are affected by different metallicity constraints on the progenitor stars. As expected, the host sample with no metallicity restriction on the progenitor stars provides a perfect tracer of the cosmic star formation history. When LGRBs are required to be generated by low-metallicity stars, they trace a decreasing fraction of the cosmic star formation rate at lower redshift, as a consequence of the global increase in metallicity. We study the properties of host galaxies up to high redshift (~9), finding that they typically have low-metallicity (Z<0.5 Z_sun) and that they are small (M<10^9 M_sun), bluer and younger than the average galaxy population, in agreement with observational data. They are also less clustered than typical L_* galaxies in the Universe, and their descendents are massive, red and reside in groups of galaxies with halo mass between 10^{13} M_sun to 10^{14} M_sun.
We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the bur st sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to $58^{+23}_{-18}$% of the peak flux. Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because of the fact that any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.
The counter jet of a short gamma-ray burst (sGRB) has not yet been observed, while recent discoveries of gravitational waves (GWs) from a binary neutron star (NS) merger GW170817 and the associated sGRB 170817A have demonstrated that off-axis sGRB je ts are detectable. We calculate the prompt emission from the counter jet of an sGRB and show that it is typically 23-26 mag in the optical-infrared band 10-10^3 sec after the GWs for an sGRB 170817A-like event, which is brighter than the early macronova (or kilonova) emission and detectable by LSST in the near future. We also propose a new method to constrain the unknown jet properties, such as the Lorentz factor, opening angle, emission radii, and jet launch time, by observing both the forward and counter jets. To scrutinize the counter jets, space GW detectors like DECIGO are powerful in forecasting the merger time (<~ 1 sec) and position (<~ 1 arcmin) (~ a week) before the merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا