ﻻ يوجد ملخص باللغة العربية
We demonstrate the measurement and manipulation of the temperature of cold CO molecules in a microchip environment. Through the use of time-resolved spatial imaging, we are able to observe the phase-space distribution of the molecules, and hence deduce the corresponding temperature. We do this both by observing the expansion of the molecular ensemble in time and through the use of numerical trajectory simulations. Furthermore, we demonstrate the adiabatic cooling of the trapped molecular sample and discuss this process.
Polar molecules in selected quantum states can be guided, decelerated, and trapped using electric fields created by microstructured electrodes on a chip. Here we explore how transitions between two of these quantum states can be induced while the mol
A microstructured array of over 1200 electrodes on a substrate has been configured to generate an array of local minima of electric field strength with a periodicity of $120 mu$m about $25 mu$m above the substrate. By applying sinusoidally varying po
Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecules spin in a plane perpendicul
The coherence of quantum systems is crucial to quantum information processing. While it has been demonstrated that superconducting qubits can process quantum information at microelectronics rates, it remains a challenge to preserve the coherence and
A proof-of-principle experiment is reported, where torsional motion of a molecule, consisting of a pair of phenyl rings, is induced by strong laser pulses. A nanosecond laser pulse spatially aligns the carbon-carbon bond axis, connecting the two phen