ﻻ يوجد ملخص باللغة العربية
Heavy polar molecules can be used to measure the electric dipole moment of the electron, which is a sensitive probe of physics beyond the Standard Model. The value is determined by measuring the precession of the molecules spin in a plane perpendicular to an applied electric field. The longer this precession evolves coherently, the higher the precision of the measurement. For molecules in a trap, this coherence time could be very long indeed. We evaluate the sensitivity of an experiment where neutral molecules are trapped electrically, and compare this to an equivalent measurement in a molecular beam. We consider the use of a Stark decelerator to load the trap from a supersonic source, and calculate the deceleration efficiency for YbF molecules in both strong-field seeking and weak-field seeking states. With a 1s holding time in the trap, the statistical sensitivity could be ten times higher than it is in the beam experiment, and this could improve by a further factor of five if the trap can be loaded from a source of larger emittance. We study some effects due to field inhomogeneity in the trap and find that rotation of the electric field direction, leading to an inhomogeneous geometric phase shift, is the primary obstacle to a sensitive trap-based measurement.
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 $mu$K. This is a key step towards a measurement of the electrons electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically
We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $hat{rm{z}}$ direction by an applied
We investigate the merits of a measurement of the permanent electric dipole moment of the electron ($e$EDM) with barium monofluoride molecules, thereby searching for phenomena of CP violation beyond those incorporated in the Standard Model of particl
Because molecules can have their orientation locked when embedded into a solid rare-gas matrix, their hyperfine structure is strongly perturbed relative to the freely rotating molecule. The addition of an electric field further perturbs the structure
Permanent electric dipole moments (EDMs) of fundamental particles such as the electron are signatures of parity and time-reversal violation due to physics beyond the standard model. EDM measurements probe new physics at energy scales well beyond the