ترغب بنشر مسار تعليمي؟ اضغط هنا

There is no coincidence after all!

77   0   0.0 ( 0 )
 نشر من قبل Saurya Das
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Saurya Das




اسأل ChatGPT حول البحث

We show that if Dark Matter is made up of light bosons, they form a Bose-Einstein condensate in the early Universe. This in turn naturally induces a Dark Energy of approximately equal density and exerting negative pressure.This explains the so-called coincidence problem.



قيم البحث

اقرأ أيضاً

No. In a number of papers Green and Wald argue that the standard FLRW model approximates our Universe extremely well on all scales, except close to strong field astrophysical objects. In particular, they argue that the effect of inhomogeneities on av erage properties of the Universe (backreaction) is irrelevant. We show that this latter claim is not valid. Specifically, we demonstrate, referring to their recent review paper, that (i) their two-dimensional example used to illustrate the fitting problem differs from the actual problem in important respects, and it assumes what is to be proven; (ii) the proof of the trace-free property of backreaction is unphysical and the theorem about it fails to be a mathematically general statement; (iii) the scheme that underlies the trace-free theorem does not involve averaging and therefore does not capture crucial non-local effects; (iv) their arguments are to a large extent coordinate-dependent, and (v) many of their criticisms of backreaction frameworks do not apply to the published definitions of these frameworks. It is therefore incorrect to infer that Green and Wald have proven a general result that addresses the essential physical questions of backreaction in cosmology.
According to the third law of Thermodynamics, it takes an infinite number of steps for any object, including black-holes, to reach zero temperature. For any physical system, the process of cooling to absolute zero corresponds to erasing information o r generating pure states. In contrast with the ordinary matter, the black-hole temperature can be lowered only by adding matter-energy into it. However, it is impossible to remove the statistical fluctuations of the infalling matter-energy. The fluctuations lead to the fact the black-holes have a finite lower temperature and, hence, an upper bound on the horizon radius. We make an estimate of the upper bound for the horizon radius which is curiosly comparable to Hubble horizon. We compare this bound with known results and discuss its implications.
Context: Strings and other alternative theories describing the quantum properties of space-time suggest that space-time could present a foamy structure and also that, in certain cases, quantum gravity (QG) may manifest at energies much below the Plan ck scale. One of the observable effects could be the degradation of the diffraction images of distant sources. Aims: We searched for this degradation effect, caused by QG fluctuations, in the light of the farthest quasars (QSOs) observed by the Hubble Space Telescope with the aim of setting new limits on the fluctuations of the space-time foam and QG models. Methods: We developed a software that estimates and compares the phase variation in the interference patterns of the high-redshift QSOs, taken from the snapshot survey of HST-SDSS, with those of stars that are expected to not be affected by QG effects. We used a two-parameter function to determine, for each test star and QSO, the maximum of the diffraction pattern and to calculate the Strehl ratio. Results: Our results go far beyond those already present in the literature. By adopting the most conservative approach where the correction terms, that describe the possibility for space-time fluctuations cumulating across long distances and partially compensate for the effects of the phase variations, are taken into account. We exclude the random walk model and most of the holographic models of the space-time foam. Without considering these correction terms, all the main QG scenarios are excluded. Finally, our results show the absence of any directional dependence of QG effects and the validity of the cosmological principle with an independent method; that is, viewed on a large scale, the properties of the Universe are the same for all observers, including the effects of space-time fluctuations.
We revisit the possibility that the Planck mass is spontaneously generated in scale invariant scalar-tensor theories of gravity, typically leading to a dilaton. The fifth force, arising from the dilaton, is severely constrained by astrophysical measu rements. We explore the possibility that nature is fundamentally Weyl-scale invariant and argue that, as a consequence, the fifth force effects are dramatically suppressed and such models are viable. We discuss possible obstructions to maintaining scale invariance and how these might be resolved.
396 - Joel M. Weller 2013
The inclusion of Dirac fermions in Einstein-Cartan gravity leads to a four-fermion interaction mediated by non-propagating torsion, which can allow for the formation of a Bardeen-Cooper-Schrieffer condensate. By considering a simplified model in 2+1 spacetime dimensions, we show that even without an excess of fermions over antifermions, the nonthermal distribution arising from preheating after inflation can give rise to a fermion condensate generated by torsion. We derive the effective Lagrangian for the spacetime-dependent pair field describing the condensate in the extreme cases of nonrelativistic and massless fermions, and show that it satisfies the Gross-Pitaevski equation for a gapless, propagating mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا