ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-hole transitions in quantum dots: realizing full control by highly focused optical-vortex beams

130   0   0.0 ( 0 )
 نشر من قبل Guillermo Federico Quinteiro
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An optical-vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which are known to carry well defined values of spin (polarization $sigma$) and orbital angular momenta; the orbital angular momentum per photon is given by the topological charge $ell$ times the Planck constant. Here we study the light-hole--to--conduction band transitions in a semiconductor quantum dot induced by a highly-focused beam originating from a $ell=1$ paraxial optical vortex. We find that at normal incidence the pulse will produce two distinct types of electron--hole pairs, depending on the relative signs of $sigma$ and $ell$. When sign($sigma$)$=$sign($ell$), the pulse will create electron--hole pairs with band+spin and envelope angular momenta both equal to one. In contrast, for sign($sigma$)$ eq$sign($ell$), the electron-hole pairs will have neither band+spin nor envelope angular momenta. A tightly-focused optical-vortex beam thus makes possible the creation of pairs that cannot be produced with plane waves at normal incidence. With the addition of co-propagating plane waves or switching techniques to change the charge $ell$ both the band+spin and the envelope angular momenta of the pair wave-function can be precisely controlled. We discuss possible applications in the field of spintronics that open up.

قيم البحث

اقرأ أيضاً

It has been theoretically predicted that light carrying orbital angular momentum, or twisted light, can be tuned to have a strong magnetic-field component at optical frequencies. We here consider the interaction of these peculiar fields with a semico nductor quantum dot and show that the magnetic interaction results in new types of optical transitions. In particular, a single pulse of such twisted light can drive light-hole-to-conduction band transitions that are cumbersome to produce using conventional Gaussian beams or even twisted light with dominant electric fields.
155 - G. F. Quinteiro , A. O. Lucero , 2013
We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are disp laced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.
We consider a quantum dot embedded in a three-dimensional nanowire with tunable aspect ratio a. A configuration interaction theory is developed to calculate the energy spectra of the finite 1D quantum dot systems charged with two electrons in the pre sence of magnetic fields B along the wire axis. Fruitful singlet-triplet transition behaviors are revealed and explained in terms of the competing exchange interaction, correlation interaction, and spin Zeeman energy. In the high aspect ratio regime, the singlet-triplet transitions are shown designable by tuning the parameters a and B. The transitions also manifest the highly correlated nature of long nanowire quantum dots.
We report strong heavy hole-light mixing in GaAs quantum dots grown by droplet epitaxy. Using the neutral and charged exciton emission as a monitor we observe the direct consequence of quantum dot symmetry reduction in this strain free system. By fit ting the polar diagram of the emission with simple analytical expressions obtained from k$cdot$p theory we are able to extract the mixing that arises from the heavy-light hole coupling due to the geometrical asymmetry of the quantum dot.
We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا