ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the effect of inhomogeneous light beams with (twisted light) and without (plane-wave light) orbital angular momentum on semiconductor-based nanostructures, when the symmetry axes of the beam and the nanostructure are displaced parallel to each other. Exact analytical results are obtained by expanding the off-centered light field in terms of the appropriate light modes centered around the nanostructure. We demonstrate how electronic transitions involving the transfer of different amounts of orbital angular momentum are switched on and off as a function of the separation between the axes of the beam and the system. In particular, we show that even off-centered plane-wave beams induce transitions such that the angular momenta of the initial and final states are different.
It has been theoretically predicted that light carrying orbital angular momentum, or twisted light, can be tuned to have a strong magnetic-field component at optical frequencies. We here consider the interaction of these peculiar fields with a semico
An optical-vortex is an inhomogeneous light beam having a phase singularity at its axis, where the intensity of the electric and/or magnetic field may vanish. Already well studied are the paraxial beams, which are known to carry well defined values o
This review article describes theoretical and experimental advances in using quantum dots as a system for studying impurity quantum phase transitions and the non-Fermi liquid behavior at the quantum critical point.
Elastic light scattering by low-dimensional semiconductor objects is investigated theoretically. The differential cross section of resonant light scattering on excitons in quantum dots is calculated. The polarization and angular distribution of scatt
We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of