ﻻ يوجد ملخص باللغة العربية
The mobility of polymer chains in perfect polyethylene (PE) crystal was calculated as a function of temperature and chain length through Molecular dynamics (MD) in united atom approximation. The results demonstrate that the chain mobility drastically increases in the vicinity of the phase transition from the orthorhombic to quasi-hexagonal phase. In the quasi-hexagonal phase, the chain mobility is almost independent on temperature and inversely proportional to the chain length.
Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells motion is governed by the g
The melting and crystallization of Al50Ni50} are studied by means of molecular dynamics computer simulations, using a potential of the embedded atom type to model the interactions between the particles. Systems in a slab geometry are simulated where
Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length $N$ and grafting density $sigma$ are varied over a wide range and t
In this paper we present an improved process for producing elastomer transistor stamps and high-mobility organic field-effect transistors (FETs) based on semiconducting acene molecular crystals. In particular, we have removed the need to use a silani
We have employed molecular dynamics simulations based on the TIP4P/2005 water model to investigate the local structural, dynamical, and dielectric properties of the two recently reported body-centered-cubic and face-centered-cubic plastic crystal pha