ترغب بنشر مسار تعليمي؟ اضغط هنا

Large in-plane deformation of RuO6 octahedron and ferromagnetism of bulk SrRuO3

362   0   0.0 ( 0 )
 نشر من قبل Sanghyun Lee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SrRuO3 is a ferromagnetic metal with several unusual physical properties such as zero thermal expansion below Tc, so-called Invar behavior. Another anomalous feature is that the a-axis lattice constant is larger than the b-axis lattice constant, a clear deviation from the predictions of the Glazer structural description with rigid RuO6 octahedron motion. Using high resolution neutron diffraction techniques, we show how these two structural anomalies arise from the irregular in-plane deformation, i.e. plastic behavior of the RuO6 octahedron, a weak band Jahn-Teller distortion. We further demonstrate that the ferromagnetic instability of SrRuO3 is related to the temperature-induced localization of Ru 4d bands.

قيم البحث

اقرأ أيضاً

The perovskite rare-earth titanates are model Mott insulators with magnetic ground states that are sensitive to structural distortions. These distortions couple strongly to the orbital degrees of freedom and, in principle, it should be possible to tu ne the superexchange and to manipulate the Curie temperature ($T_C$) with strain. We investigate the representative system (Y,La,Ca)TiO$_3$, which exhibits low crystallographic symmetry and no structural instabilities. From magnetic susceptibility measurements of $T_C$, we demonstrate direct, reversible and continuous control of ferromagnetism by influencing the TiO$_6$ octahedral tilts and rotations with uniaxial strain. The relative change in $T_C$ as a function of strain is well described by textit{ab initio} calculations, which provides detailed understanding of the complex interactions among structural, orbital and magnetic properties in these compounds. The demonstrated manipulation of octahedral distortions opens up far-reaching possibilities for investigations of electron-lattice coupling, competing ground states and magnetic quantum phase transitions in a wide range of quantum materials.
Bonding geometry engineering of metal-oxygen octahedra is a facile way of tailoring various functional properties of transition metal oxides. Several approaches, including epitaxial strain, thickness, and stoichiometry control, have been proposed to efficiently tune the rotation and tilting of the octahedra, but these approaches are inevitably accompanied by unnecessary structural modifications such as changes in thin-film lattice parameters. In this study, we propose a method to selectively engineer the octahedral bonding geometries, while maintaining other parameters that might implicitly influence the functional properties. A concept of octahedral tilt propagation engineering has been developed using atomically designed SrRuO3/SrTiO3 superlattices. In particular, the propagation of RuO6 octahedral tilting within the SrRuO3 layers having identical thicknesses was systematically controlled by varying the thickness of adjacent SrTiO3 layers. This led to a substantial modification in the electromagnetic properties of the SrRuO3 layer, significantly enhancing the magnetic moment of Ru. Our approach provides a method to selectively manipulate the bonding geometry of strongly correlated oxides, thereby enabling a better understanding and greater controllability of their functional properties.
86 - Minjae Kim , B. I. Min 2015
We have investigated the temperature (T)-dependent evolution of electronic structures and magnetic properties of an itinerant ferromagnet SrRuO3, employing the combined scheme of the density functional theory and the dynamical mean-field theory (DFT+ DMFT). The inclusion of finite dynamical correlation effects beyond the DFT well describes not only the incoherent hump structure observed in the photoemission experiment but also the T-dependent magnetic properties in accordance with experiments. We have shown that the magnetization of SrRuO3 evolves with the Stoner behavior below the Curie temperature (Tc), reflecting the weak itinerant ferromagnetic behavior, but the local residual magnetic moment persists even above Tc, indicating the local magnetic moment behavior. We suggest that the ferromagnetism of SrRuO3 has dual nature of both weak and local moment limits, even though the magnetism of SrRuO3 is more itinerant than that of Fe.
Atomically sharp oxide heterostructures often exhibit unusual physical properties that are absent in the constituent bulk materials. The interplay between electrostatic boundary conditions, strain and dimensionality in ultrathin epitaxial films can r esult in monolayer-scale transitions in electronic or magnetic properties. Here we report an atomically sharp antiferromagnetic-to-ferromagnetic phase transition when atomically growing polar antiferromagnetic LaMnO3 (001) films on SrTiO3 substrates. For a thickness of five unit cells or less, the films are antiferromagnetic, but for six unit cells or more, the LaMnO3 film undergoes a phase transition to a ferromagnetic state over its entire area, which is visualized by scanning superconducting quantum interference device microscopy. The transition is explained in terms of electronic reconstruction originating from the polar nature of the LaMnO3 (001) films. Our results demonstrate how new emergent functionalities can be visualized and engineered in atomically thick oxide films at the atomic level.
The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional sk yrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO$_3$ can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO$_3$ in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO$_3$, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا