ﻻ يوجد ملخص باللغة العربية
The low-lying states of the $^{9}$Li nucleus are investigated with a unified framework of microscopic structure and reaction models. In the structure model, the wave function is fully antisymmetrized and the $^{9}$Li nucleus is described as an $alpha$ + $t$ + $n$ + $n$ four-body system, and low-lying 1/2$^{-}$, 3/2$^{-}$, 5/2$^{-}$, and 7/2$^{-}$ states are obtained by the stochastic multi-configuration mixing method. Using these wave functions, the quasi-elastic cross section at $E/A$ = 60 MeV and the elastic and inelastic cross sections at $E/A$ = 50 MeV on the $^{12}$C target are calculated in the framework of the microscopic coupled channel (MCC) method. The characteristic inelastic angular distribution is seen in the 3/2$_{2}^{-}$ state, whose $alpha+t$ cluster structure and valence neutron configurations are discussed in detail. We find the possibility of triaxial deformation and mixing of di-neutron components in the $^{9}$Li nucleus.
The $^8$Li($n,gamma$)$^9$Li reaction plays an important role in several astrophysics scenarios. It cannot be measured directly and indirect experiments have so far provided only cross section limits. Theoretical predictions differ by an order of magn
A statistical theory of light nucleus reaction (STLN) is proposed to describe both neutron and light charged particle induced nuclear reactions with 1p-shell light nuclei involved. The dynamic of STLN is described by the unified Hauser-Feshbach and e
The study of inelastic scattering and multi-nucleon transfer reactions was performed by bombarding a $^{9}$Be target with a $^3$He beam at an incident energy of 30 MeV. Angular distributions for $^9$Be($^3$He,$^3$He)$^{9}$Be, $^9$Be($^3$He,$^4$He)$^{
The relative importance of neutron transfer and breakup process in reaction around Coulomb barrier energies have been studied for the $^{7}$Li+$^{124}$Sn system. Coupled channel calculations have been performed to understand the one neutron stripping
The p( uc{11}{Li}, uc{9}{Li})t reaction has been studied for the first time at an incident energy of 3$A$ MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differenti