ترغب بنشر مسار تعليمي؟ اضغط هنا

Field induced phase transitions and phase diagrams in BiFeO_3-like multiferroics

41   0   0.0 ( 0 )
 نشر من قبل Zukhra Gareeva
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The incommensurate magnetic structures and phase diagrams of multiferroics has been explored on the basis of accurate micromagnetic analysis taking into account the spin flexoelecric interaction (Lifshitz invariant). The objects of the study are BiFeO_3-like single crystals and epitaxial films grown on the <111> substrates. The main control parameters are the magnetic field, the magnetic anisotropy, and the epitaxial strain in the case of films. We predict novel quasi-cycloidal structures induced by external magnetic field or by epitaxial strain in the BiFeO_3-films. Phase diagrams representing the regions of homogeneous magnetic states and incommensurate structures stability are constructed for the two essential geometries of magnetic field (magnetic field oriented parallel to the principal crystal axis C_3 and perpendicular to this direction C_3). It is shown that the direction of applied magnetic field substantially affects a set of magnetic phases, properties of incommensurate structures, character of phase transitions. Novel conical type of cycloidal ordering is revealed during the transition from incommensurate cycloidal structure into homogeneous magnetic state. Elaborated phase diagrams allow estimate appropriate combination of control parameters (magnetic field, magnetic anisotropy, exchange stiffness) required to the destruction of cycloidal ordering corresponding to the transition into homogeneous structure. The results show that the magnitude of critical magnetic field suppressing cycloid is lowered in multiferroics films comparing to single crystals, it can be also lowered by the selection of orientation of magnetic field. Our results can be useful for strain engineering of new multiferroic functional materials on demand.

قيم البحث

اقرأ أيضاً

AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has bee n found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.
Exploring new parameter regimes to realize and control novel phases of matter has been a main theme in modern condensed matter physics research. The recent discovery of 2D magnetism in nearly freestanding monolayer atomic crystals has already led to observations of a number of novel magnetic phenomena absent in bulk counterparts. Such intricate interplays between magnetism and crystalline structures provide ample opportunities for exploring quantum phase transitions in this new 2D parameter regime. Here, using magnetic field and temperature dependent circularly polarized Raman spectroscopy of phonons and magnons, we map out the phase diagram of CrI3 that has been known to be a layered AFM in its 2D films and a FM in its 3D bulk. We, however, reveal a novel mixed state of layered AFM and FM in 3D CrI3 bulk crystals where the layered AFM survives in the surface layers and the FM appears in deeper bulk layers. We then show that the surface layered AFM transits into the FM at a critical magnetic field of 2 T, similar to what was found in the few layer case. Interestingly, concurrent with this magnetic phase transition, we discover a first-order structural phase transition that alters the crystallographic point group from C3i to C2h and thus, from a symmetry perspective, this monoclinic structural phase belongs to the 3D nematic order universality class. Our result not only unveils the complex single magnon behavior in 3D CrI3, but also settles down the puzzle of how CrI3 transits from a bulk FM to a thin layered AFM semiconductor, despite recent efforts in understanding the origin of layered AFM in CrI3 thin layer, and reveals the intimate relationship between the layered AFM-to-FM and the crystalline rhombohedral-to-monoclinic phase transitions. These findings further open up opportunities for future 2D magnet-based magneto-mechanical devices.
240 - Yan-Fen Chang , Young Sun 2020
Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects, low operating temperature, and small electric polarization induced by magnetic orders. As a result, current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites. Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics. A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo2Fe11AlO22 and Ba0.9Sr1.1Co2Fe11AlO22 is able to cause a huge change in the linear magnetoelectric coefficient by several orders, leading to a giant magnetotranstance (GMT) effect at room temperature. The GMT effect is comparable to the well-known giant magnetoresistance (GMR) effect in magnetic multilayers, and thus opens up a door toward practical applications for single-phase multiferroics.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.
The influence of an external static magnetic field (up to 480 mT)on the structural properties of EuTiO$_3$ (ETO) polycrystalline samples was examined by powder XRD at the Elettra synchrotron facilities in the temperature range 100-300K. While the cub ic to tetragonal structural phase transition temperature in this magnetic field range remains almost unaffected, significant lattice effects appear at two characteristic temperatures (~200K and 250K), which becomes more pronounced at a critical threshold magnetic field. At ~200K a change in the sign of the magnetostriction is detected attributed to a modification of the local magnetic properties from intrinsic ferromagnetism to intrinsic antiferromagnetism. These data are a clear indication that strong spin-lattice interactions govern also the high temperature phase of ETO and trigger the appearance of magnetic domain formation and novel phase transitions
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا