ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced phase transitions in AgClO4

133   0   0.0 ( 0 )
 نشر من قبل Daniel Errandonea
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AgClO4 has been studied under compression by x-ray diffraction and density functional theory calculations. Experimental evidence of a structural phase transition from the tetragonal structure of AgClO4 to an orthorhombic barite-type structure has been found at 5.1 GPa. The transition is supported by total-energy calculations. In addition, a second transition to a monoclinic structure is theoretically proposed to take place beyond 17 GPa. The equation of state of the different phases is reported as well as the calculated Raman-active phonons and their pressure evolution. Finally, we provide a description of all the structures of AgClO4 and discuss their relationships. The structures are also compared with those of AgCl in order to explain the structural sequence determined for AgClO4.



قيم البحث

اقرأ أيضاً

A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio cal culations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on IR-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.
Nuclear resonant inelastic x-ray scattering on quartz structured 57FePO4 as a function of pressure, up to 8 GPa reveals hardening of the low-energy phonons under applied pressures up to 1.5 GPa, followed by a large softening at 1.8 GPa upon approachi ng the phase transition pressure of ~2 GPa. The pressure-induced phase transitions in quartz-structured compounds have been predicted to be related to a soft phonon mode at the Brillouin-zone boundary (1/3, 1/3, 0) and to the break-down of the Born-stability criteria. Our results provide the first experimental evidence of this predicted phonon softening.
185 - G. A. Gehring 2008
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this coupling exceeds a critical value: this is inevitable if diverges as Tc approaches zero. It is argued that this is the cause of the first order transition that is observed in many systems. Using Landau theory we obtain expressions for the boundaries of the region where phase separation occurs that agree well with experiments done on MnSi and other materials. The theory can be used to obtain very approximate values for the temperature and pressure at the tricritical point in terms of quantities measured at ambient pressure and the measured values of along the second order line. The values of the tricritical temperature for various materials obtained from Landau theory are too low but it is shown that the predicted values will rise if the effects of fluctuations are included.
A pressure-induced simultaneous metal-insulator transition (MIT) and structural-phase transformation in lithium hydride with about 1% volume collapse has been predicted by means of the local density approximation (LDA) in conjunction with an all-elec tron GW approximation method. The LDA wrongly predicts that the MIT occurs before the structural phase transition. As a byproduct, it is shown that only the use of the generalized-gradient approximation together with the zero-point vibration produces an equilibrium lattice parameter, bulk modulus, and an equation of state that are in excellent agreement with experimental results.
When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space grou p (P21/n), but with a larger unit-cell in which the number of atoms is doubled. The transition leads to an 8% increase in the density of LaVO4. The occurrence of such a transition has been determined by x-ray diffraction, Raman spectroscopy, and ab initio calculations. The combination of the three techniques allows us to also characterize accurately the pressure evolution of unit-cell parameters and the Raman (and IR)-active phonons of the low- and high-pressure phase. In particular, room-temperature equations of state have been determined. The changes driven by pressure in the crystal structure induce sharp modifications in the color of LaVO4 crystals, suggesting that behind the monoclinic-to-monoclinic transition there are important changes of the electronic properties of LaVO4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا