ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the Nature of the Extended HI Structure Around LITTLE THINGS Dwarf Galaxy NGC 1569

122   0   0.0 ( 0 )
 نشر من قبل Megan Johnson
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Megan Johnson




اسأل ChatGPT حول البحث

This work presents an extended, neutral Hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the Spring of 2010, the Robert C. Byrd Green Bank Telescope (GBT) was used to map a 9 degree x 2 degree region in HI line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter HI cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a v-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1.5 degrees, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0.5 degree HI cloud, filaments, and main body of the galaxy. The 0.5 degree HI cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous HI bridge but more data are needed to determine if this is the case.



قيم البحث

اقرأ أيضاً

One possible channel for the formation of dwarf galaxies involves birth in the tidal tails of interacting galaxies. We report the detection of a bright UV tidal tail and several young tidal dwarf galaxy candidates in the post-merger galaxy NGC 4922 i n the Coma cluster. Based on a two-component population model (combining young and old stellar populations), we find that the light of tidal tail predominantly comes from young stars (a few Myr old). The Galaxy Evolution Explorer (GALEX) ultraviolet data played a critical role in the parameter (age and mass) estimation. Our stellar mass estimates of the tidal dwarf galaxy candidates are ~ 10^{6-7} M_sun, typical for dwarf galaxies.
We present near-IR JH spectra of the central regions of the dwarf starburst galaxy NGC 1569 using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA). The dust-penetrating properties and available spectral features of the near-I R, combined with the integral field unit (IFU) capability to take spectra of a field, make FISICA an ideal tool for this work. We use the prominent [He I] (1.083mu m) and Pabeta (1.282 mu m) lines to probe the dense star forming regions as well as characterize the general star forming environment around the super star clusters (SSCs) in NGC 1569. We find [He I] coincident with CO clouds to the north and west of the SSCs, which provides the first, conclusive evidence for embedded star clusters here.
We present a flux-resolved X-ray analysis of the dwarf Seyfert 1.8 galaxy NGC 4395, based on three archival $XMM-Newton$ and one archival $NuSTAR$ observations. The source is known to harbor a low mass black hole ($sim 10^4- {rm a~ few~}times 10^{5}~ rm M_odot$) and shows strong variability in the full X-ray range during these observations. We model the flux-resolved spectra of the source assuming three absorbing layers: neutral, mildly ionized, and highly ionized ($N_{rm H} sim 1.6times 10^{22}-3.4 times 10^{23}~rm cm^{-2}$, $sim 0.8-7.8 times 10^{22}~rm cm^{-2}$, and $ 3.8 times 10^{22}~rm cm^{-2}$, respectively. The source also shows intrinsic variability by a factor of $sim 3$, on short timescales, due to changes in the nuclear flux, assumed to be a power law ($Gamma = 1.6-1.67$). Our results show a positive correlation between the intrinsic flux and the absorbers ionization parameter. The covering fraction of the neutral absorber varies during the first $XMM-Newton$ observation, which could explain the pronounced soft X-ray variability. However, the source remains fully covered by this layer during the other two observations, largely suppressing the soft X-ray variability. This suggests an inhomogeneous and layered structure in the broad line region. We also find a difference in the characteristic timescale of the power spectra between different energy ranges and observations. We finally show simulated spectra with $XRISM$, $Athena$, and $eXTP$, which will allow us to characterize the different absorbers, study their dynamics, and will help us identify their locations and sizes.
As part of our study on the impact of violent star formation on the interstellar medium (ISM) of dwarf galaxies, we report observations of neutral atomic hydrogen (HI) in the post-starburst dwarf galaxy NGC 1569. High-resolution measurements with the VLA (B-, C- and D-array) are aimed at identifying morphological and kinematical signatures in the HI caused by the starburst. Our kinematical data suggest a huge hole in the HI distribution, probably due to the large number of supernovae explosions in the center of the galaxy over the past 20 Myr. Investigating the large-scale HI structure, we confirm the existence of a possible HI companion and a so-called HI bridge east of NGC 1569. Furthermore, we report the detection of additional low-intensity HI halo emission, which leads us to suggest a revised halo structure. Based on the new picture, we discuss the origin of the halo gas and possible implications for the evolution of the starburst in NGC 1569.
257 - G. Gentile , M. Baes , B. Famaey 2010
We present HI observations performed at the GMRT of the nearby dwarf galaxy NGC 1560. This Sd galaxy is well-known for a distinct wiggle in its rotation curve. Our new observations have twice the resolution of the previously published HI data. We der ived the rotation curve by taking projection effects into account, and we verified the derived kinematics by creating model datacubes. This new rotation curve is similar to the previously published one: we confirm the presence of a clear wiggle. The main differences are in the innermost ~100 arcsec of the rotation curve, where we find slightly (<~ 5 km/s) higher velocities. Mass modelling of the rotation curve results in good fits using the core-dominated Burkert halo (which however does not reproduce the wiggle), bad fits using the a Navarro, Frenk & White halo, and good fits using MOND (Modified Newtonian Dynamics), which also reproduces the wiggle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا